Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers unravel a mystery about DNA

20.11.2006
UCLA researchers in collaboration with researchers at Rutgers University have solved longstanding mysteries surrounding DNA transcription, the first step in carrying out instructions contained in our genes.

The breakthrough described in an article in the Nov. 17 issue of the journal Science reveals important structural information about the gyrations of DNA during transcription and the effects of those gyrations on the process.

The discoveries, which inform our understanding of the structure and mechanics of RNAP -- an enzyme responsible for making RNA from a DNA or RNA template -- can help set the stage for new opportunities in combating bacterial diseases that kill 13 million people worldwide each year.

The researchers used single-molecule spectroscopy to monitor the transfer of energy between -- and hence the distance separating -- pairs of fluorescent chemical tags attached to key structural elements of RNAP and the DNA double helix during initiation of the transcription process.

... more about:
»DNA »RNAP »UCLA

The changes in the distances between these tags confirmed that transcription proceeds initially through a "scrunching" mechanism in which, much like a fisherman reeling in a catch, RNAP remains in a fixed position while it pulls the flexible DNA strand of the gene within itself and past the enzyme's reactive center to form the RNA product.

These changes are inconsistent with other theories that had suggested that RNAP moves along the DNA strand as a complete block in a process resembling the movement of an inchworm.

The research team is comprised of Achillefs N. Kapanidis, Emmanuel Margeat, Sam On Ho, Ekaterine Kortkhonjia and Shimon Weiss of the UCLA Department of Chemistry and Biochemistry, the Department of Physiology and the California NanoSystems Institute (CNSI). The team collaborated with Richard H. Ebright, Howard Hughes Medical Institute, Waksman Institute and Department of Chemistry, Rutgers University.

The scrunching model implies that the scrunched DNA is expelled from the enzyme channel at predictable sites that are available for interaction with transcription regulatory proteins. Beyond resolving the mechanism for initiation, the significance of this work is in pointing out an important regulation "checkpoint." Scrunched DNA is likely to play a major role in future studies of transcription regulation, and possibly become a focus for antibiotic drug discovery efforts.

"These are issues that we were not able to resolve until the development of the single molecule methods that we employed in these studies," Ebright said. "These methods involve detecting and manipulating single molecules, one at a time -- a breakthrough in its own right."

"The study of molecular machines, the dynamics of their moving parts and their translocation on molecular tracks is of great interest to nanotechnologists at the CNSI," said Weiss, the leader of the UCLA team. "Beyond furthering the understanding of transcription regulation, the novel methods and findings of this work will aid future studies of other molecular machines involved in cell replication, transcription and protein synthesis."

Jennifer Marcus | EurekAlert!
Further information:
http://www.cnsi.ucla.edu

Further reports about: DNA RNAP UCLA

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>