Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers unravel a mystery about DNA

20.11.2006
UCLA researchers in collaboration with researchers at Rutgers University have solved longstanding mysteries surrounding DNA transcription, the first step in carrying out instructions contained in our genes.

The breakthrough described in an article in the Nov. 17 issue of the journal Science reveals important structural information about the gyrations of DNA during transcription and the effects of those gyrations on the process.

The discoveries, which inform our understanding of the structure and mechanics of RNAP -- an enzyme responsible for making RNA from a DNA or RNA template -- can help set the stage for new opportunities in combating bacterial diseases that kill 13 million people worldwide each year.

The researchers used single-molecule spectroscopy to monitor the transfer of energy between -- and hence the distance separating -- pairs of fluorescent chemical tags attached to key structural elements of RNAP and the DNA double helix during initiation of the transcription process.

... more about:
»DNA »RNAP »UCLA

The changes in the distances between these tags confirmed that transcription proceeds initially through a "scrunching" mechanism in which, much like a fisherman reeling in a catch, RNAP remains in a fixed position while it pulls the flexible DNA strand of the gene within itself and past the enzyme's reactive center to form the RNA product.

These changes are inconsistent with other theories that had suggested that RNAP moves along the DNA strand as a complete block in a process resembling the movement of an inchworm.

The research team is comprised of Achillefs N. Kapanidis, Emmanuel Margeat, Sam On Ho, Ekaterine Kortkhonjia and Shimon Weiss of the UCLA Department of Chemistry and Biochemistry, the Department of Physiology and the California NanoSystems Institute (CNSI). The team collaborated with Richard H. Ebright, Howard Hughes Medical Institute, Waksman Institute and Department of Chemistry, Rutgers University.

The scrunching model implies that the scrunched DNA is expelled from the enzyme channel at predictable sites that are available for interaction with transcription regulatory proteins. Beyond resolving the mechanism for initiation, the significance of this work is in pointing out an important regulation "checkpoint." Scrunched DNA is likely to play a major role in future studies of transcription regulation, and possibly become a focus for antibiotic drug discovery efforts.

"These are issues that we were not able to resolve until the development of the single molecule methods that we employed in these studies," Ebright said. "These methods involve detecting and manipulating single molecules, one at a time -- a breakthrough in its own right."

"The study of molecular machines, the dynamics of their moving parts and their translocation on molecular tracks is of great interest to nanotechnologists at the CNSI," said Weiss, the leader of the UCLA team. "Beyond furthering the understanding of transcription regulation, the novel methods and findings of this work will aid future studies of other molecular machines involved in cell replication, transcription and protein synthesis."

Jennifer Marcus | EurekAlert!
Further information:
http://www.cnsi.ucla.edu

Further reports about: DNA RNAP UCLA

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>