Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCLA researchers unravel a mystery about DNA

UCLA researchers in collaboration with researchers at Rutgers University have solved longstanding mysteries surrounding DNA transcription, the first step in carrying out instructions contained in our genes.

The breakthrough described in an article in the Nov. 17 issue of the journal Science reveals important structural information about the gyrations of DNA during transcription and the effects of those gyrations on the process.

The discoveries, which inform our understanding of the structure and mechanics of RNAP -- an enzyme responsible for making RNA from a DNA or RNA template -- can help set the stage for new opportunities in combating bacterial diseases that kill 13 million people worldwide each year.

The researchers used single-molecule spectroscopy to monitor the transfer of energy between -- and hence the distance separating -- pairs of fluorescent chemical tags attached to key structural elements of RNAP and the DNA double helix during initiation of the transcription process.

... more about:

The changes in the distances between these tags confirmed that transcription proceeds initially through a "scrunching" mechanism in which, much like a fisherman reeling in a catch, RNAP remains in a fixed position while it pulls the flexible DNA strand of the gene within itself and past the enzyme's reactive center to form the RNA product.

These changes are inconsistent with other theories that had suggested that RNAP moves along the DNA strand as a complete block in a process resembling the movement of an inchworm.

The research team is comprised of Achillefs N. Kapanidis, Emmanuel Margeat, Sam On Ho, Ekaterine Kortkhonjia and Shimon Weiss of the UCLA Department of Chemistry and Biochemistry, the Department of Physiology and the California NanoSystems Institute (CNSI). The team collaborated with Richard H. Ebright, Howard Hughes Medical Institute, Waksman Institute and Department of Chemistry, Rutgers University.

The scrunching model implies that the scrunched DNA is expelled from the enzyme channel at predictable sites that are available for interaction with transcription regulatory proteins. Beyond resolving the mechanism for initiation, the significance of this work is in pointing out an important regulation "checkpoint." Scrunched DNA is likely to play a major role in future studies of transcription regulation, and possibly become a focus for antibiotic drug discovery efforts.

"These are issues that we were not able to resolve until the development of the single molecule methods that we employed in these studies," Ebright said. "These methods involve detecting and manipulating single molecules, one at a time -- a breakthrough in its own right."

"The study of molecular machines, the dynamics of their moving parts and their translocation on molecular tracks is of great interest to nanotechnologists at the CNSI," said Weiss, the leader of the UCLA team. "Beyond furthering the understanding of transcription regulation, the novel methods and findings of this work will aid future studies of other molecular machines involved in cell replication, transcription and protein synthesis."

Jennifer Marcus | EurekAlert!
Further information:

Further reports about: DNA RNAP UCLA

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>