Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover role for dueling RNAs

20.11.2006
Researchers have found that a class of RNA molecules, previously thought to have no function, may in fact protect sex cells from self-destructing. These findings will be published in the November 17 issue of the journal Cell.

Central to this discovery is the fundamental process of gene expression. When a gene is ready to produce a protein, the two strands of DNA that comprise the gene unravel. The first strand produces a molecule called messenger RNA, which acts as the protein's template. Biologists call this first strand of DNA the "sense" or "coding" transcript. Even though the other strand doesn't contain a protein recipe, it may also, on occasion, produce an "anti-sense" RNA molecule, one whose sequence is complementary to that of the messenger, or sense, RNA. Antisense RNA has been detected for a number of genes, but is largely considered a genetic oddity.

Using common baker's yeast, Cintia Hongay, a postdoctoral researcher in the lab of Whitehead Member and MIT Professor Gerald Fink, discovered that in the case of a gene called IME4, the antisense RNA blocks the sense RNA. In other words, the gene disables its own ability to make protein.

"This is the first case where a specific function in a higher cell for antisense RNA has been found," says Fink, senior author on the paper. "This points to an entirely new process of gene regulation that we've never seen before in eukaryotic cells."

... more about:
»Chromosome »IME4 »RNA »antisense

There is a method to this sense/antisense madness, one that has a kind of yin and yang quality. When conditions around yeast cells are good and rich in nutrients, the cells divide by mitosis--that is, the DNA duplicates so each daughter cell receives exactly the same number of chromosomes as the original cell. However, when the yeast cells are starving, IME4 switches on and activates a process called meiosis. Here, the cells divide into germ-cell spores that, like mammalian egg and sperm cells, have half the number of chromosomes. Yeast spores withstand this harsh environment far more ably than the larger cells from which they originate.

But in some cases, flipping the meiotic switch can be catastrophic. If a cell with only one copy of each chromosome (a haploid cell) is forced into meiosis, the progeny won't survive. Fortunately, such destructive meiotic division is avoided in haploid cells because they continually produce IME4 antisense RNA, blocking the production of sense RNA. Antisense IME4, then, safeguards against meiosis in cells that can't handle it.

"This is the first time that we've found a function for antisense RNA, that is not RNAi, in a higher cell type," says Hongay. "In fact, it's really the first time we've seen a gene regulate itself in this way."

"For years scientists have evaluated genomes by measuring the sense RNA, with antisense transcripts thought to have no meaning at all," says Fink. "Here we've found a process in which antisense RNA regulates sense RNA. This same process may occur in the sex cells of mammals. In fact, considering how widespread these antisense transcripts are, I wouldn't be surprised if these findings eventually lead us to discover an entirely new level of gene regulation."

Hongay is now searching the yeast genome for other genes that might be regulated by antisense RNA.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Chromosome IME4 RNA antisense

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>