Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pressured by predators, lizards see rapid shift in natural selection

20.11.2006
Countering the widespread view of evolution as a process played out over the course of eons, evolutionary biologists have shown that natural selection can turn on a dime -- within months -- as a population's needs change.

In a study of island lizards exposed to a new predator, the scientists found that natural selection dramatically changed direction over a very short time, within a single generation, favoring first longer and then shorter hind legs.

The findings, by Jonathan B. Losos of Harvard University and colleagues, are detailed this week in the journal Science. Losos did much of the work before joining Harvard earlier this year from Washington University in St. Louis.

"Because of its epochal scope, evolutionary biology is often caricatured as incompatible with controlled experimentation," says Losos, professor of organismic and evolutionary biology in Harvard's Faculty of Arts and Sciences and curator in herpetology at the Harvard Museum of Comparative Zoology. "Recent work has shown, however, that evolutionary biology can be studied on short time scales and that predictions about it can be tested experimentally. We predicted, and then demonstrated, a reversal in the direction of natural selection acting on limb length in a population of lizards."

... more about:
»Anolis »Biology »Evolutionary »Predator »lizard

Losos and colleagues studied populations of the lizard Anolis sagrei on minuscule islands, or cays, in the Bahamas. They introduced to six of these cays a larger, predatory lizard (Leiocephalus carinatus) commonly found on nearby islands and known as a natural colonizer of small cays. The scientists kept six other control cays predator-free and exhaustively counted, marked, and measured lizards on all 12 isles.

Anolis sagrei spends much of its time on the ground, but previous research has shown that when a terrestrial predator is introduced, these lizards take to trees and shrubs, becoming increasingly arboreal over time. Losos and his colleagues hypothesized that immediately following a predator's arrival, longer-legged -- and hence faster-running -- Anolis lizards would be favored to elude capture. However, as the lizards grew ever more arboreal in habitat, the scientists projected that natural selection would begin to favor shorter limbs, which are better suited to navigating narrow branches and twigs.

Their hypothesis was borne out. Six months after the introduction of the predator, Losos found that the Anolis population had dropped by half or more on the islands with the predators, and in comparison to the lizards on the predator-free islands, long legs were more strongly favored: Survivors had longer legs relative to non-survivors. After another six months, during which time the Anolis lizards grew increasingly arboreal, selective pressures were exactly the opposite: Survivors were now characterized by having shorter legs on the experimental islands as compared to the control islands.

The behavioral shift from the ground to higher perches apparently caused this remarkable reversal, Losos says, adding that behavioral flexibility may often drive extremely rapid shifts in evolution.

"Evolutionary biology is by its nature an historical science, but the combination of microevolutionary experimentation and macroevolutionary historical analysis can provide a rich understanding about the genesis of biological diversity," the researchers write.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Anolis Biology Evolutionary Predator lizard

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>