Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair teams' motto: 'To protect and serve'

20.11.2006
When you dial 911 you expect rescuers to pull up at your front door, unload and get busy--not park the truck down the street and eat donuts.

It's the same for a cell--just before it divides, it recruits protein complexes that repair breakage that may have occurred along the linear DNA chains making up your 46 chromosomes. Without repair, damage caused by smoking, chemical mutagens, or radiation might be passed on to the next generation.

However, in 2005, investigators at the Salk Institute for Biological Studies observed that before cell division some of these cellular paramedics inexplicably idle at undamaged chromosome ends, known as telomeres. Apparently the telomeres' disheveled appearance --resembling that of broken DNA strands--raises a red flag.

Now, in a study published in the Nov. 17 issue of Cell, that same team led by Jan Karlseder, Ph.D, Hearst Endowment Assistant Professor in the Molecular and Cell Biology Laboratory, reveals why those repair crews are parked at the ends of chromosomes and in doing so answer fundamental questions about how chromosomal stability is maintained.

... more about:
»Chromosome »DNA »Karlseder »Verdun »machinery »telomeres

After the 2005 study, says Karlseder, "We formed a hypothesis that after telomeres replicate they need to be detected by the internal DNA damage machinery--otherwise they cannot form a protective structure, or chromosomal cap."

And that's exactly what the new study shows. Examining activity of telomeric and DNA repair proteins in cultured human cells, the investigators found that right before cell division cellular repair proteins (including one actually called the 9-1-1 complex) are recruited to exposed DNA ends. But rather than fixing what resembles a break, the repair crew, which first arrived at the scene, calls in a second conglomeration of repair proteins. This one, called the homologous recombination (HR) machinery, creates the protective structure.

"The HR machinery fixes any break in the genome that occurs during replication of DNA," explains post-doctoral researcher Ramiro Verdun, Ph.D., lead author of the 2005 and the current study. However, at telomeres, just before they unload their cellular repair truck, HR crews apparently realize where they are--at the end and not the middle of the DNA strand-- and reconfigure. "At telomeres, they invade and then stop," says Verdun. "They adopt a different strategy."

That strategy is to tuck in the ragged chromosomal tips and form the cap, thereby hiding those tips from enzymes whose job it is to reattach errant DNA strands. "Again it was surprising," says Karlseder of the versatile HR team. "The cell is very clever. It takes advantage of a machinery that's already there and whose job it is to repair damage, but at telomeres this machinery fulfills a very special 'repair' function."

Be thankful your cells are so clever. Erroneous fusion of chromosome ends would be disastrous, leading to cell death or worse. "When DNA at telomeres is repaired chromosomes fuse together. If these cells then divide you could get chromosome breakage and genome instability, which leads to cancer," explains Karlseder.

In fact, the reason that telomeres, which are synthesized by an enzyme known as telomerase, exist is to assure that chromosome ends remain intact through a lifetime of cell divisions. When asked if there are cancers in which telomerase activity goes awry, Karlseder answers with no hesitation: "Almost all of them."

In fact, many proteins contained in DNA repair complexes are defective in cancer. "Proteins that play an important role in the model we propose are mutated in several diseases," says Verdun. "In cells with those mutations, the telomeres are not normal--they are fused, broken, shorter, or longer--but they are not normal."

For Verdun one goal of basic science is to understand how normal cells behave with the goal of fixing them if something goes wrong. "We are working on normal human cells--not cancer cells," he explains. "But we cannot understand how badly behaved cancer cells work if we don't know how a normal cell functions."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Chromosome DNA Karlseder Verdun machinery telomeres

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>