Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans and chimpanzees, how similar are we?

20.11.2006
The DNA sequences of humans and chimpanzees are 98.5 percent identical, but now Uppsala University researchers can show that parts of the genetic material are missing in one species or the other.

This means in some cases that humans can produce a protein that the chimpanzee lacks and vice versa. The study, being published in the November issue of the Journal of Molecular Evolution, estimates that the total variation between humans and chimpanzees is rather 6–7 percent.

The chimpanzee, together with the pygmy chimpanzee (the bonobo), is the closest relative to humans still in existence. Even though the similarities between chimpanzees and human are obvious, there are clear differences in body structure, intellect, and behavior, etc. In the more than five million years that have passed since the developmental lines of humans and chimpanzees parted, mutations have altered the genes. A key issue for researchers studying the evolutionary history of humans and chimpanzees is to understand which of these differences have been crucial to the development of the species and their unique characteristics.

Tomas Bergström and his research team at the Department of Genetics and Pathology have compared the DNA sequence from chromosome 21 in humans and chimpanzees to map where the genetic differences are found and what significance this might have. The findings corroborate other studies that indicate that in 1.5 percent of the genetic material a nucleotide (genetic letter) has been replaced by another nucleotide. But the findings also show that more than 5 percent of the genetic material occurs in only one of the species. In both species, DNA has been added or lost. In other words, the total difference is estimated at 6.5 percent. Even though most of the differences occur, as expected, in parts of the genetic material that do not contain genes, the research team has found that pieces of DNA have been added or lost in 13 percent of the genes. Some genes (5 percent) have undergone such major changes that certain proteins can probably not be produced by one of the species.

... more about:
»Chimpanzee »DNA »Genetic »difference

“It is probable that a species can compensate for this by producing a similar protein from another part of the gene, but some of these differences have clearly been crucial to the development of the species,” says Tomas Bergström.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.springerlink.com/content/f7783l76602ggm06/?p=bcc261c2ad1e467082ba1dad8854bcfa&pi=9

Further reports about: Chimpanzee DNA Genetic difference

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>