Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA code breaker tested theory on Jane Austen text

20.11.2006
A researcher at the University of Bradford has perfected a computer programme that could unlock the secrets of the human genome and pave the way towards new treatments and drugs sooner than had been expected.

As reported in this week’s edition of the journal Nature (pg 259, Vol. 444, 16 November 2006) Professor Simon Shepherd has constructed an algorithm that can unpick the sequences of As, Gs, Cs and Ts that make up the world’s genomes.

Professor Shepherd, who is Professor of Computational Mathematics at the University of Bradford, has been working on genomics with Professor Clive Beggs (Professor of Medical Technology) and Dr Sue Jones (Lecturer in Biomedical Science) in Bradford’s Medical Biophysics Research Group.

Professor Shepherd originally tested his computer programme on the entire text of Emma by Jane Austen after removing all the spaces and punctuation, leaving just a long impenetrable line of letters. Despite having no knowledge of the English vocabulary or syntax, the programme managed to identify 80 per cent of the words and separate them back into sentences.

... more about:
»DNA »believe »sequence

Professor Shepherd believes that this can be applied to the genetic sequence, which contains around 3 billion letters and is currently baffling scientists as to how to interpret it. Within these sequence there is information that nobody knows how to extract – codes that regulate, control or describe all kinds of cellular processes.

Professor Shepherd believes that his method of number crunching will be able to make an interpretation. He said: “We are treating DNA as we used to treat problems in intelligence. We want to break the code at the most fundamental level.”

A human cell has to fit about two metres of DNA into a nucleus a few micrometres in diameter, which requires packing it together with proteins in a complex hierarchy of ‘folding back and wrapping around’. The fundamental element underlying all this packaging is the nucleosome – 147 base pairs of DNA wrapped around a globule of eight proteins called ‘histones’.

Professor Shepherd added: “The protein folding problem is regarded as one of the three grand challenge problems of 21st century science. Its resolution is crucial to the development of the new drugs and medical therapies that the Human Genome project promises one day to deliver.

“I believe that the combination of insights from the hard, numerate sciences such as mathematics and engineering, coupled with expert knowledge of the biochemistry at the cellular level, will prove to be the most fruitful approach.

“Although results will not happen overnight, we can expect to see the promise of the Human Genome project bearing fruit within the next 20 to 50 years.”

Emma Banks | alfa
Further information:
http://www.bradford.ac.uk
http://www.nature.com/nature/journal/v444/n7117/pdf/444259a.pdf

Further reports about: DNA believe sequence

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>