Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical Pairing - Origin of life: the search for the first genetic material

17.11.2006
How did life originate on Earth?

Until now, there have only been theories to answer this question. One of the fundamental steps leading to living organisms is the development of molecules that can replicate and multiply themselves—the first genetic material. A team led by Ramanarayanan Krishnamurthy and Albert Eschenmoser at The Scripps Research Institute in La Jolla, California, is researching how this molecule might have looked.

Our own genetic material is DNA. Its backbone is made of sugar and phosphate building blocks. Like a strand of pearls, the four “letters” of the genetic code are arranged along this backbone. Two complementary strands of DNA form a double helix because the purine bases adenine (A) and guanine (G) form specific pairs with the pyrimidine bases thymine (T) and cytosine (C), attaching to each other through two or three docking sites. This type of structure could also be the basis for the first genetic material. However, it is doubtful that its backbone consisted of sugar and phosphate; it may have consisted of peptide-like building blocks. Amino acids, from which peptides are made, were already present in the “primordial soup”. However, the bases may also have looked different in their primitive form.

To find the right track in searching for the origins of life, the team is trying to put together groups of potential building blocks from which primitive molecular information transmitters could have been made. The researchers have taken a pragmatic approach to their experiments. Compounds that they test do not need to fulfill specific chemical criteria; instead, they must pass their “genetic information” on to subsequent generations just as simply as the genetic molecules we know today—and their formation must have been possible under prebiotic conditions. Experiments with molecules related to the usual pyrimidine bases (pyrimidine is a six-membered aromatic ring containing four carbon and two nitrogen atoms), among others, seemed a good place to start. The team thus tried compounds with a triazine core (a six-membered aromatic ring made of three carbon and three nitrogen atoms) or aminopyridine core (which has an additional nitrogen- and hydrogen-containing side group). Imitating the structures of the normal bases, the researchers equipped these with different arrangements of nitrogen- and hydrogen- and/or oxygen-containing side groups.

... more about:
»Backbone »Genetic »genetic material

Unlike the usual bases, these components can easily be attached to many different types of backbone, for example, a backbone made of dipeptides or other peptide-like molecules. In this way, the researchers did indeed obtain molecules that could form specific base pairs not only with each other, but also with complementary RNA and DNA strands. Interestingly, only one sufficiently strong pair was formed within both the triazine and aminopyridine families; however, for a four-letter system analogous to the ACGT code, two such strongly binding pairs are necessary. “Our results indicate that the structure of the bases, rather than the structure of the backbone, was the critical factor in the development of our modern genetic material,” says Krishnamurthy. Many chain molecules are able to adopt a suitable spatial structure, but only a few bases can enter into the necessary specific pairing. In this, our alternative bases are clearly inferior to the usual Watson–Crick bases. “Based on our observations, we are beginning to understand why the natural bases are optimal with regard to the function they perform.”

Author: Ramanarayanan Krishnamurthy, The Scripps Research Institute, La Jolla, (USA), mailto:rkrishna@scripps.edu

Title: Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides and Oligodipeptoids Tagged with Triazines as Recognition Elements / Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides Tagged with 2,4-Disubstituted 5-Aminopyrimidines as Recognition Elements

Angewandte Chemie International Edition, doi: 10.1002/anie.200603207

Ramanarayanan Krishnamurthy | Angewandte Chemie
Further information:
http://www.angewandte.de
http://www.scripps.edu

Further reports about: Backbone Genetic genetic material

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>