Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical Pairing - Origin of life: the search for the first genetic material

17.11.2006
How did life originate on Earth?

Until now, there have only been theories to answer this question. One of the fundamental steps leading to living organisms is the development of molecules that can replicate and multiply themselves—the first genetic material. A team led by Ramanarayanan Krishnamurthy and Albert Eschenmoser at The Scripps Research Institute in La Jolla, California, is researching how this molecule might have looked.

Our own genetic material is DNA. Its backbone is made of sugar and phosphate building blocks. Like a strand of pearls, the four “letters” of the genetic code are arranged along this backbone. Two complementary strands of DNA form a double helix because the purine bases adenine (A) and guanine (G) form specific pairs with the pyrimidine bases thymine (T) and cytosine (C), attaching to each other through two or three docking sites. This type of structure could also be the basis for the first genetic material. However, it is doubtful that its backbone consisted of sugar and phosphate; it may have consisted of peptide-like building blocks. Amino acids, from which peptides are made, were already present in the “primordial soup”. However, the bases may also have looked different in their primitive form.

To find the right track in searching for the origins of life, the team is trying to put together groups of potential building blocks from which primitive molecular information transmitters could have been made. The researchers have taken a pragmatic approach to their experiments. Compounds that they test do not need to fulfill specific chemical criteria; instead, they must pass their “genetic information” on to subsequent generations just as simply as the genetic molecules we know today—and their formation must have been possible under prebiotic conditions. Experiments with molecules related to the usual pyrimidine bases (pyrimidine is a six-membered aromatic ring containing four carbon and two nitrogen atoms), among others, seemed a good place to start. The team thus tried compounds with a triazine core (a six-membered aromatic ring made of three carbon and three nitrogen atoms) or aminopyridine core (which has an additional nitrogen- and hydrogen-containing side group). Imitating the structures of the normal bases, the researchers equipped these with different arrangements of nitrogen- and hydrogen- and/or oxygen-containing side groups.

... more about:
»Backbone »Genetic »genetic material

Unlike the usual bases, these components can easily be attached to many different types of backbone, for example, a backbone made of dipeptides or other peptide-like molecules. In this way, the researchers did indeed obtain molecules that could form specific base pairs not only with each other, but also with complementary RNA and DNA strands. Interestingly, only one sufficiently strong pair was formed within both the triazine and aminopyridine families; however, for a four-letter system analogous to the ACGT code, two such strongly binding pairs are necessary. “Our results indicate that the structure of the bases, rather than the structure of the backbone, was the critical factor in the development of our modern genetic material,” says Krishnamurthy. Many chain molecules are able to adopt a suitable spatial structure, but only a few bases can enter into the necessary specific pairing. In this, our alternative bases are clearly inferior to the usual Watson–Crick bases. “Based on our observations, we are beginning to understand why the natural bases are optimal with regard to the function they perform.”

Author: Ramanarayanan Krishnamurthy, The Scripps Research Institute, La Jolla, (USA), mailto:rkrishna@scripps.edu

Title: Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides and Oligodipeptoids Tagged with Triazines as Recognition Elements / Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides Tagged with 2,4-Disubstituted 5-Aminopyrimidines as Recognition Elements

Angewandte Chemie International Edition, doi: 10.1002/anie.200603207

Ramanarayanan Krishnamurthy | Angewandte Chemie
Further information:
http://www.angewandte.de
http://www.scripps.edu

Further reports about: Backbone Genetic genetic material

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>