Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-steroidal anti-inflammatory drug increases liver damage in mice carrying mutant human gene

17.11.2006
Alpha-1-antitrypsin deficiency isn't a term that rolls right off the tongue. But people diagnosed with this genetic disorder learn its potential effects well. They know they shouldn't smoke or be around smokers because they are at increased risk for developing emphysema at a young age. In addition, some patients with alpha-1-antitrypsin (AT) deficiency can develop serious liver disease. But predicting which of them are at risk for liver disease is not yet possible.

Now research performed at Washington University School of Medicine in St. Louis sheds light on the mechanisms that contribute to liver disease in alpha-1-AT deficiency patients. Using an experimental mouse model of the disorder, the researchers investigated the effects of a non-steroidal anti-inflammatory drug (NSAID) on liver injury. An estimated 15 to 20 million people in the United States take NSAIDs like ibuprofen and naproxen on a long-term basis.

The findings, published in the October issue of the journal Hepatology, show that the NSAID indomethacin (Indocin), administered at doses typically nontoxic to mice, significantly increased liver damage in the experimental mice.

The mice carried a mutated form of the human alpha-1-AT gene (called the alpha-1-ATZ gene), the most common form of the gene associated with the development of liver disease in people with alpha-1-AT deficiency. Greater expression of the mutant alpha-1-ATZ gene and increased amounts of alpha-1-ATZ protein in the liver accompanied the increase in liver injury in the experimental mice given the NSAID.

"These data demonstrate that environmental factors such as drug administration can affect the development of liver injury in this animal model," says lead author David Rudnick, M.D., Ph.D., assistant professor of pediatrics and of molecular biology and pharmacology. "And they raise the possibility that NSAIDs could have similar effects on gene and protein expression and perhaps on liver injury in people with alpha-1-AT deficiency."

Approximately 1 in 2,000 individuals has alpha-1-AT deficiency. Rudnick points out that even though alpha-1-AT deficiency is the most common genetic indication for pediatric liver disease and liver transplantation, a study to investigate whether NSAIDs affect human alpha-1-AT patients may not be feasible because of the disorder's relative rarity.

"But I tell my patients with any form of chronic liver injury they should avoid NSAIDs," says Rudnick, a pediatric gastroenterologist at St. Louis Children's Hospital. "The drugs have an established potential hepatotoxicity. I would say alpha-1-AT deficiency liver disease is another example where these drugs should be avoided."

Normally, the liver secretes alpha-1-AT protein into the bloodstream, but the abnormal protein, alpha-1-ATZ, can get "stuck" in liver cells. Liver biopsies of alpha-1-AT deficiency patients reveal that their liver cells have numerous globules containing alpha-1-ATZ protein.

The defective alpha-1-ATZ doesn't reach the lungs, where alpha-1-AT normally regulates enzymes that digest protein. Loss of alpha-1-AT's regulation of protein-digesting enzymes in the lungs can result in tissue damage and emphysema.

In ways not yet entirely understood, accumulation of alpha-1-ATZ in the liver can lead to both liver damage and liver cancer. In the mice carrying the human alpha-1-ATZ gene, the NSAID indomethacin not only caused liver cells to accumulate even more of the abnormal alpha-1-ATZ protein but also to proliferate or multiply faster than usual -- a hallmark of liver response to injury.

People who have alpha-1-AT deficiency vary widely in the severity of liver injury: some patients never have liver problems while others will require a liver transplant before they are two years old. Only 10 to 20 percent of infants with alpha-1-ATZ genes will develop clinically overt liver damage.

"We don't yet know the mechanism accounting for such wide variability in this disorder, but other genetic and environmental factors must contribute," Rudnick says. "The effect of indomethacin on these transgenic mice suggests that NSAIDs may be an example of such an environmental influence."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: NSAID Rudnick alpha-1-AT alpha-1-ATZ deficiency liver liver disease

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

25.09.2017 | Health and Medicine

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>