Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified strains of Chlamydia trachomatis could produce new diseases

17.11.2006
A new study led by a scientist at Children's Hospital Oakland Research Institute (CHORI) is the first to conclude that Chlamydia trachomatis is evolving at a rate faster than scientists first thought or imagined.

Chlamydia trachomatis is a bacterium that is the leading cause of sexually transmitted diseases and the second leading cause of blindness worldwide. Scientists believe the bacterium is evolving through a process called recombination where genes from one or more strains combine to create new strains and – theoretically – new diseases.

The study is featured in the November issue of Genome Research and was led by Dr. Deborah Dean MD, MPH, senior scientist at Children's Hospital Oakland Research Institute (CHORI). Her research suggests that since Chlamydia trachomatis evolves through recombination where one or more strains combine, the traditional method of studying a single gene to track the transmission of the bacterium is wrong. "What we found is an organism that not only evolves rapidly, but in ways that we thought were rare. We also discovered that this organism can customize its attack," said Dr. Dean. "Consequently, the constant flux of the bacterium could serve as a gateway for new emerging diseases, but more research needs to be conducted to understand if and how this is happening."

600 million people are infected across the globe with Chlamydia trachomatis and 8 million are already blind or severely visually impaired. In some parts of third-world countries, more than 90% of the population is infected. Chlamydia trachomatis has a variety of strains; different strains are responsible for different diseases. Some strains cause sexually transmitted diseases while others cause eye infections. Blinding trachoma is caused by repeated eye infections that cause scarring, which result in the eyelashes turning in-wards. Bacterial infection develops as the eyelashes scratch the surface of the eye, which eventually heals by scarring, resulting in blindness.

... more about:
»Chlamydien »identified »strain »trachomatis

Previously, the organism was identified using a single gene, ompA, and the protein encoded by that gene, MOMP. In this study, the clinical strains, which are samples of Chlamydia trachomatis currently responsible for human disease today, were compared to standard reference strains that have been laboratory adapted over the last few decades. By studying multiple strains, the researchers discovered that the strains that were identified as the same strain were actually different.

The next step will be to study clinical strains in comparison with laboratory reference strains to decipher exactly how different strains cause disease and whether new diseases are emerging as a result of the emergence of new strains. "Large-scale comparative genomics will be necessary to understand the precise mechanisms underlying Chlamydia trachomatis recombination and how other species of chamydiae may evolve and transfer from animals to humans."

Jennifer Santos | EurekAlert!
Further information:
http://www.childrenshospitaloakland.org/

Further reports about: Chlamydien identified strain trachomatis

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>