Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified strains of Chlamydia trachomatis could produce new diseases

17.11.2006
A new study led by a scientist at Children's Hospital Oakland Research Institute (CHORI) is the first to conclude that Chlamydia trachomatis is evolving at a rate faster than scientists first thought or imagined.

Chlamydia trachomatis is a bacterium that is the leading cause of sexually transmitted diseases and the second leading cause of blindness worldwide. Scientists believe the bacterium is evolving through a process called recombination where genes from one or more strains combine to create new strains and – theoretically – new diseases.

The study is featured in the November issue of Genome Research and was led by Dr. Deborah Dean MD, MPH, senior scientist at Children's Hospital Oakland Research Institute (CHORI). Her research suggests that since Chlamydia trachomatis evolves through recombination where one or more strains combine, the traditional method of studying a single gene to track the transmission of the bacterium is wrong. "What we found is an organism that not only evolves rapidly, but in ways that we thought were rare. We also discovered that this organism can customize its attack," said Dr. Dean. "Consequently, the constant flux of the bacterium could serve as a gateway for new emerging diseases, but more research needs to be conducted to understand if and how this is happening."

600 million people are infected across the globe with Chlamydia trachomatis and 8 million are already blind or severely visually impaired. In some parts of third-world countries, more than 90% of the population is infected. Chlamydia trachomatis has a variety of strains; different strains are responsible for different diseases. Some strains cause sexually transmitted diseases while others cause eye infections. Blinding trachoma is caused by repeated eye infections that cause scarring, which result in the eyelashes turning in-wards. Bacterial infection develops as the eyelashes scratch the surface of the eye, which eventually heals by scarring, resulting in blindness.

... more about:
»Chlamydien »identified »strain »trachomatis

Previously, the organism was identified using a single gene, ompA, and the protein encoded by that gene, MOMP. In this study, the clinical strains, which are samples of Chlamydia trachomatis currently responsible for human disease today, were compared to standard reference strains that have been laboratory adapted over the last few decades. By studying multiple strains, the researchers discovered that the strains that were identified as the same strain were actually different.

The next step will be to study clinical strains in comparison with laboratory reference strains to decipher exactly how different strains cause disease and whether new diseases are emerging as a result of the emergence of new strains. "Large-scale comparative genomics will be necessary to understand the precise mechanisms underlying Chlamydia trachomatis recombination and how other species of chamydiae may evolve and transfer from animals to humans."

Jennifer Santos | EurekAlert!
Further information:
http://www.childrenshospitaloakland.org/

Further reports about: Chlamydien identified strain trachomatis

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>