Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of S Vaccine and Infectious Disease Organization team discovers key step in flu virus replication

As public health officials around the world keep a nervous eye on the spread of avian influenza, the University of Saskatchewan's Vaccine and Infectious Disease Organization (VIDO) has uncovered a key step in how the influenza virus causes infection.

Yan Zhou and her team have discovered how a crucial pathway that supports the influenza A virus's ability to reproduce itself is activated, a finding that could pave the way for new drugs and vaccines.

The paper will appear in the January 2007 issue of the Journal of General Virology and recently has been given advance on-line publication.

"The work we are doing will be applicable to all influenza viruses, including influenza A virus subtype H5N1," said VIDO Director Lorne Babiuk.

... more about:
»Influenza »Key »Virus »flu

Zhou says that although years of research remain to be done, this work provides novel insights for developing live vaccines and antiviral drugs for influenza epidemics and pandemics. A provisional patent has been filed on the findings.

"Given the health, economic and social consequences of influenza epidemics, the work of Dr. Zhou and her team demonstrates the importance of building influenza research capacity in Canada," said Dr. Bhagirath Singh, Scientific Director of the CIHR Institute of Infection and Immunity.

"Their research findings may help to develop new influenza treatments and prevent the disease, as well as add to global pandemic preparedness research."

To survive, the influenza virus hijacks the host animal or human's cellular machinery and forces it to make more copies of the virus. The researchers believe that the cellular events involved in this process are an excellent target for interventions against influenza.

The study revealed novel characteristics of a protein, called NS1, that activates a key pathway in the virus's reproduction. This information will help the researchers learn how to create harmless influenza viruses that can be used as live vaccines.

The pathway can be thought of as an assembly line with a switch to turn it on, says Zhou. "If the switch is turned on, the pathway enables efficient production of more viruses. But only the NS1 protein can turn on the switch."

The researchers are investigating genes and proteins of the influenza viruses of swine, horses and birds to see how they activate downstream cellular signalling pathways. To do this, they are using reverse genetics technology, where researchers begin with a gene and figure out its function.

These studies will allow the team to identify the genes that enable the virus to cause disease, laying the groundwork for antiviral drug development.

"Increasingly, new diseases involve both humans and animals," said Andrew Potter,VIDO's Associate Director (Research). "VIDO's background in veterinary research means that when diseases like avian influenza develop, we have the resources to begin studying the disease fairly quickly."

Marie-France Poirier | EurekAlert!
Further information:

Further reports about: Influenza Key Virus flu

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>