Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a gene that enhances muscle performance

17.11.2006
A team of researchers, led by scientists at Dartmouth Medical School and Dartmouth College, have identified and tested a gene that dramatically alters both muscle metabolism and performance. The researchers say that this finding could someday lead to treatment for muscle diseases, including helping the elderly who suffer from muscle deterioration and improving muscle performance in endurance athletes.

The researchers report that the enzyme called AMP-activated protein kinase (or AMPK) is directly involved in optimizing muscle activity. The team bred a mouse that genetically expressed AMPK in an activated state. Like a trained athlete, this mouse enjoyed increased capacity to exercise, manifested by its ability to run three times longer than a normal mouse before exhaustion.

One particularly striking feature of the finding was the accumulation of muscle glycogen, the stored form of carbohydrates, a condition that many athletes seek by "carbo-loading" before an event or game. The study appears in the Nov. 14 online issue of the American Journal of Physiology: Endocrinology and Metabolism.

"Our genetically altered mouse appears to have already been an exercise program," says Lee Witters, the Eugene W. Leonard 1921 Professor of Medicine and Biochemistry at Dartmouth Medical School and professor of biological sciences at Dartmouth College. "In other words, without a prior exercise regimen, the mouse developed many of the muscle features that would only be observed after a period of exercise training."

... more about:
»Muscle »Performance »exercise

Witters, whose lab led the study, explains that this finding has implication for anyone with a muscle disease and especially for the growing proportion of the population that is aging. Deteriorating muscles often make the elderly much more prone to fall, leading to hip and other fractures. According to Witters, there is tremendous interest in the geriatric field to find ways to improve muscle performance.

"We now wonder if it's possible to achieve elements of muscular fitness without having to exercise, which in turn, raises many questions about possible modes of exercise performance enhancement, including the development of drugs that could do the same thing as we have done genetically," he says. "This also might raise to some the specter of 'gene doping,' something seriously being talked about in the future of high-performance athletes."

Witters says that the carbohydrate, glucose, is a major fuel that powers muscles, and this contributes directly to a muscle's ability to repetitively contract during exercise. The activated AMPK in the Dartmouth mouse appears to have increased glycogen content by actually switching on a gene that normally synthesizes liver glycogen.

"The switching on of this liver gene in muscles," he says, "is a shift in the conception of the biochemistry of muscle metabolism, since many enzyme genes are thought to only be active in just one tissue."

Other authors on the paper include Laura Barré, Christine Richardson, and Steven Fiering, all at Dartmouth; Michael Hirshman and Laurie Goodyear of Joslin Diabetes Center in Boston; Joseph Brozinick with Eli Lilly and Company; and Bruce Kemp of the St. Vincent's Institute in Australia.

This research is funded by the National Institutes of Health.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

Further reports about: Muscle Performance exercise

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>