Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a gene that enhances muscle performance

17.11.2006
A team of researchers, led by scientists at Dartmouth Medical School and Dartmouth College, have identified and tested a gene that dramatically alters both muscle metabolism and performance. The researchers say that this finding could someday lead to treatment for muscle diseases, including helping the elderly who suffer from muscle deterioration and improving muscle performance in endurance athletes.

The researchers report that the enzyme called AMP-activated protein kinase (or AMPK) is directly involved in optimizing muscle activity. The team bred a mouse that genetically expressed AMPK in an activated state. Like a trained athlete, this mouse enjoyed increased capacity to exercise, manifested by its ability to run three times longer than a normal mouse before exhaustion.

One particularly striking feature of the finding was the accumulation of muscle glycogen, the stored form of carbohydrates, a condition that many athletes seek by "carbo-loading" before an event or game. The study appears in the Nov. 14 online issue of the American Journal of Physiology: Endocrinology and Metabolism.

"Our genetically altered mouse appears to have already been an exercise program," says Lee Witters, the Eugene W. Leonard 1921 Professor of Medicine and Biochemistry at Dartmouth Medical School and professor of biological sciences at Dartmouth College. "In other words, without a prior exercise regimen, the mouse developed many of the muscle features that would only be observed after a period of exercise training."

... more about:
»Muscle »Performance »exercise

Witters, whose lab led the study, explains that this finding has implication for anyone with a muscle disease and especially for the growing proportion of the population that is aging. Deteriorating muscles often make the elderly much more prone to fall, leading to hip and other fractures. According to Witters, there is tremendous interest in the geriatric field to find ways to improve muscle performance.

"We now wonder if it's possible to achieve elements of muscular fitness without having to exercise, which in turn, raises many questions about possible modes of exercise performance enhancement, including the development of drugs that could do the same thing as we have done genetically," he says. "This also might raise to some the specter of 'gene doping,' something seriously being talked about in the future of high-performance athletes."

Witters says that the carbohydrate, glucose, is a major fuel that powers muscles, and this contributes directly to a muscle's ability to repetitively contract during exercise. The activated AMPK in the Dartmouth mouse appears to have increased glycogen content by actually switching on a gene that normally synthesizes liver glycogen.

"The switching on of this liver gene in muscles," he says, "is a shift in the conception of the biochemistry of muscle metabolism, since many enzyme genes are thought to only be active in just one tissue."

Other authors on the paper include Laura Barré, Christine Richardson, and Steven Fiering, all at Dartmouth; Michael Hirshman and Laurie Goodyear of Joslin Diabetes Center in Boston; Joseph Brozinick with Eli Lilly and Company; and Bruce Kemp of the St. Vincent's Institute in Australia.

This research is funded by the National Institutes of Health.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

Further reports about: Muscle Performance exercise

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>