Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusing genes could hold leukaemia treatment clues

17.11.2006
Pioneering cancer scientists at The University of Nottingham are to investigate why a rare form of leukaemia is triggered when two genes fuse together.

It is hoped the research will lead to the discovery of potential new drugs to treat the rare form of acute myeloid leukaemia, which currently affects 2,000 adults and more than 100 children in the UK every year.

Professor David Heery and Dr Karin Kindle in the University’s School of Pharmacy have been awarded a £150,000 grant from the AICR (Association of International Cancer Research) to study how the abnormal fusion of MOZ and TIF2 genes affects bone marrow cells and, by doing so, contributes to the development of the cancer.

Professor Heery, head of the Division of Molecular and Cellular Sciences, said: “At least 50 genes have been identified that are involved in gene fusions associated with leukaemia. The key question is to discover how MOZ-TIF2 and similar fusion proteins affect cell function.

... more about:
»Treatment »affect »leukaemia

“This will be critical in the future discovery of potential new drug treatments for patients with this form of the disease.”

AICR’s scientific adviser Dr Mark Matfield believes the work will have important implications in better understanding a type of leukaemia for which the exact causes are, as yet, unknown.

“This is an aggressive form of cancer and although it can affect all ages it is more common in older people, with slightly more reported cases in men. The main lab tests used in diagnosis are a full blood count and bone marrow biopsy,” he said.

“Without treatment AML will rapidly cause death, but with modern treatment protocols the cure rate has improved significantly in patients who are under 60. Older people tend to do less well, partly because they are often unable to receive the very intensive therapy needed for effective management of the disease.”

Derek Napier, AICR’s Chief Executive, said the grant was in line with the charity’s policy of funding the most exciting and novel approaches to research worldwide.

“We believe it important to fund work that pushes the boundaries and Professor Heery and Dr Kindle are charged with tackling a great scientific challenge that could in future change the lives of tens of thousands of people in the UK across the world.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: Treatment affect leukaemia

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>