Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic study of Neanderthal DNA reveals early split between humans and Neanderthals

16.11.2006
In the most thorough study to date of the Neanderthal genome, scientists suggest an early human-Neanderthal split. The two species have a common ancestry, say the authors, but do not share much else after evolving their separate ways. The study, published in this week's issue of Science, also finds no evidence of genetic admixture between Neanderthals and humans.

The study helps to explain the evolutionary relationship between Homo sapiens and Neanderthals (Homo neanderthalensis). It also "signifies the dawn of Neanderthal genomics," wrote the study's authors, who comprise scientists from the Lawrence Berkeley (Calif.) National Laboratory, the U.S. Department of Energy Joint Genome Institute (Walnut Creek, Calif.), the University of Chicago (Ill.) and the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany).

"Humans went through several key stages of evolution during the last 400,000 years," said study c-author Jonathan Pritchard, professor of human genetics who led the University of Chicago team that analyzed the sequencing data. "If we can compare humans and Neanderthals genomes, then we can possibly identify what the key genetic changes were during that final stage of human evolution."

Another author of the Science paper, Svante Pääbo of the Max Planck Institute, sequenced Neanderthal mitochondrial DNA in 1997 and first suggested that Neanderthals did not make a substantial contribution to the modern human gene pool. This new study, headed up by Edward Rubin of the Lawrence Berkeley National Laboratory, reinforces that long-debated theory.

"While unable to definitively conclude that interbreeding between the two species of humans did not occur," Rubin said, "analysis of the nuclear DNA from the Neanderthal suggests the low likelihood of it having occurred at any appreciable level."

According to the authors, "If Neanderthal admixture did indeed occur, then [it would] manifest in our data as an abundance of low-frequency derived alleles in Europeans where the derived allele matches Neanderthal. No site in the data set appears to be of this type."

However, Pritchard said, "We do not exclude the possibility of modest levels of genome admixture."

Pritchard's team suggests that human and Neanderthal shared a common ancestor about 706,000 years ago, and that the human and the Neanderthal ancestral populations split around 370,000 years ago. (Researchers found some genetic variation between the two species, which the team attributes to the ancestral population.) Both lines co-existed in Europe and western Asia until about 30,000 years ago.

The team used DNA extracted from a 38,000-year-old Neanderthal specimen from Vindija, Croatia. They recovered 65,250 base pairs of the Neanderthal's 3 billion total base pairs and utilized traditional sequencing technologies used for the Human Genome Project as well as the new parallel pyrosequencing method to clone and insert missing fragmented DNA and create a library of Neanderthal DNA.

Unlike the libraries used to sequence the human genome, which contained only human DNA fragments, the Neanderthal DNA library is riddled with contamination from microbes that lived off the nutrients in the Neanderthal remains, as well as contamination from humans handling the specimens.

However, the scientists performed a variety of studies to confirm that the vast majority of the human-like sequence in the library was indeed Neanderthal and not just contamination from human bone collectors and laboratory workers.

The researchers then verified the authenticity of the Neanderthal sequence by comparing it to the human and chimpanzee genomes. This revealed multiple locations where the Neanderthal sequence matched more closely to that of chimpanzee and not human. Using the comparison of the Neanderthal to the human and chimp genomes enabled the investigators to estimate the human-Neanderthal divergence timeline.

The scientists also used data from the HapMap genome project to understand the relationship between modern human diversity and the Neanderthal sequence. Their analysis showed that the Neanderthal sequence could not have come from any modern human population.

The study suggests that Neanderthal and human genomes are greater than 99.5 percent identical, which leaves less than 0.5 percent of the Neanderthal genome that will attract much attention. Many of the biological differences between modern humans and Neanderthals will be encoded at specific sites, which is why the researchers were able to analyze enough data without having to sequence the entire Neanderthal genome.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

Further reports about: DNA Max Planck Institute Neanderthal sequence split

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>