Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Trojan Horse' agent halts bone metastasis in mice

16.11.2006
Human clinical trial for drug could open within a year

A novel vascular targeting agent completely prevented the development of bone tumors in 50 percent of the mice tested in a preclinical study, providing early evidence that it could treat, or thwart, growth of tumors in bone, a common destination for a number of cancers when they start to spread.

Researchers at The University of Texas M. D. Anderson Cancer Center reported in the journal Cancer Research that this "Trojan Horse" agent, VEGF121/rGel, stopped specialized cells within the bone from chewing up other bone material to make room for the implanted tumor to grow.

Although this study tested the ability of VEGF121/rGel to halt the growth of human prostate cancer cells in the bones of mice, investigators say it likely could help prevent the growth of other cancers in bones such as breast, multiple myeloma, lung and renal cell.

"Many tumors invade bone in the same way, so these findings suggest it may be possible to shut down this process regardless of the tumor type," says the study's lead author, Michael G. Rosenblum, Ph.D., professor in the Department of Experimental Therapeutics. "If that could be done - and we are a long way from determining if it is possible - we may be able to offer the first treatment that specifically targets bone metastasis."

The study also revealed critical information about the role of vascular endothelial growth factor (VEGF) in the development of tumors in bone, says Rosenblum. VEGF is a signaling protein involved in the creation of new blood vessels, but in this study the researchers found that it plays a surprising role in the remodeling of bone tissue.

In the normal maintenance of bones, a balance exists between activity of cells known as osteoclasts, which break down and resorb bone matrix, and osteoblasts, which form new bone. Researchers know that tumor cells that metastasize to bones release VEGF, but what they did not know is whether the protein interrupted bone maintenance or promoted growth of blood vessels to feed the neophyte cancer, Rosenblum said

To find out, Rosenblum designed an experiment with VEGF121/rGel, an agent he and his colleagues began to develop several years ago. They created the drug by fusing the smallest of VEGF proteins (VEGF 121) to a genetically engineered toxin, gelonin, derived from a plant that grows wild in India, and used bacteria to produce the fusion protein. The agent is designed to enter new blood vessel cells in tumors through expressed VEGF receptors and, once inside, the "Trojan Horse" toxin destroys the cell, disrupting the ability of tumors to form blood vessels to supply the nutrients they need to grow. Animal studies previously conducted by the researchers have shown that the protein can selectively destroy blood vessels feeding human solid tumors.

In this study, investigators implanted human prostate cancer cells, which are highly metastatic to bone, directly into the leg bone marrow of experimental mice in order to simulate a bone metastasis. A week later, they treated the animals with five staggered doses of VEGF121/rGel delivered through intravenous injections.

Half of the treated mice did not develop any bone tumors, Rosenblum says. "There was no evidence of cancer growth," he says, adding, "We don't know why the treatment didn't work in the other half of the mice, but we may have started therapy too late."

Rosenblum and his research team then found that VEGF121/rGel dramatically reduced the number of osteoclast cells in the leg bones and further research demonstrated that pre-osteoclast like cells, known as monocytes, had been expressing a receptor, Flt-1, designed to latch on to the VEGF protein secreted by cancer cells.

When activated by maturation factors including VEGF, the pre-osteoclasts differentiated into mature osteoclasts and chew up bone tissue, providing the tumor new space to grow. The mature osteoclast cells themselves do not express the Flt-1 receptor.

According to Rosenblum, the VEGF121/rGel agent entered the immature cells via the Flt-1 receptor and destroyed them, shutting down tumor growth. "This was a surprise to us," he says. "We had not expected these cells to be killed at all because we knew, through our earlier experiments, that VEGF121/rGel destroyed blood vessels by entering a different cell surface receptor, one which is not expressed on pre-osteoclasts."

Thus, in the bone, VEGF121/rGel may be working through two different VEGF receptors. It stops the bone destruction needed for the cancer to grow and may inhibit blood vessel growth to the metastasized tumor, Rosenblum says.

"The fact that this form of VEGF targeting works on different cell receptors in blood vessels and in bone cells is a unique finding that could be clinically significant, not only to treating cancer but other bone disorders," he says. "In the least, this study helps us understand more about how VEGF operates inside the body and how it is involved in bone remodeling."

Rosenblum said that phase I human clinical trials testing VEGF121/rGel are expected to open shortly at M. D. Anderson.

Julie A. Penne | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: Rosenblum Trojan VEGF VEGF121/rGel blood vessel metastasis osteoclast pre-osteoclast receptor vessel

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>