Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find mutations that let bird flu adapt to humans

16.11.2006
By comparing influenza viruses found in birds with those of the avian virus that have also infected human hosts, researchers have identified key genetic changes required for pandemic strains of bird flu.

The new work, reported in the Nov. 16 issue of the journal Nature, illustrates the genetic changes required for the H5N1 avian influenza virus to adapt to easily recognize the receptors that are the gateway to human cells.

"We identified two changes that are important," says Yoshihiro Kawaoka, the senior author of the Nature paper and a virologist at the University of Wisconsin-Madison School of Veterinary Medicine. "Both changes are needed for the H5N1 virus to recognize human receptors."

The new report provides a molecular blueprint for the genetic changes required to transform a virus that only infects birds to a virus capable of easily recognizing human receptors. Receptors are molecules on the surface of cells that permit the virus to dock with the cell and commandeer it to initiate a cascade of infection. By knowing what genetic changes are required for the virus to easily infect human cells, it may be possible to detect the emergence of pandemic strains earlier, providing public health officials and vaccine manufacturers with precious time to prepare for a global outbreak of highly pathogenic influenza. To be successful, a virus must be able to recognize and attach to a host cell. But human and avian influenza viruses recognize different cell receptors. Avian flu viruses have demonstrated an ability to evolve to easily infect humans by exchanging genes with human viruses that subsequently permit them to recognize human receptor molecules and gain easy access to cells, typically in the human respiratory system.

... more about:
»Kawaoka »Mutation »avian »flu »pandemic »receptor

The change is thought to occur when human patients are exposed at the same time to a human flu virus and an avian flu virus. Most viruses, including influenza, readily swap genes with one another.

In the new study, conducted by an international team of researchers, the viruses isolated from human patients in Vietnam and Thailand could recognize both human and avian cell receptors. By contrast, the viruses found in chickens and ducks could only recognize the receptors on avian cells.

The work helps flesh out the changes that have occurred in the worrisome strain of avian influenza virus known as H5N1, a strain some fear could be the organism that will trigger a pandemic of virulent human influenza. The avian virus has already changed dramatically from when it was first identified in 1997, says Kawaoka, who also holds an appointment at the University of Tokyo.

"There are big differences between the virus first found in 1997 and the virus we see now," Kawaoka explains. "We are watching this virus turn itself into a human pathogen."

The mutations found by Kawaoka's group have not yet conferred a complete ability on avian flu to easily recognize the topography of human cells, but they are key steps on that pathway. More mutations, says Kawaoka, will be required for the virus to fully adapt to humans, but it is not known how many mutations are needed for such a change.

However, if scientists are able to continue to monitor and secure viral isolates from humans infected with bird flu, they may be able to map a mutation trajectory that will help predict when the avian virus will cross the threshold to become a human pathogen.

The last two flu pandemics in 1957 and 1968 were caused by avian viruses that had accumulated enough genetic mutations to be considered hybrids of animal and human viruses, Kawaoka notes.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: Kawaoka Mutation avian flu pandemic receptor

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>