Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find mutations that let bird flu adapt to humans

16.11.2006
By comparing influenza viruses found in birds with those of the avian virus that have also infected human hosts, researchers have identified key genetic changes required for pandemic strains of bird flu.

The new work, reported in the Nov. 16 issue of the journal Nature, illustrates the genetic changes required for the H5N1 avian influenza virus to adapt to easily recognize the receptors that are the gateway to human cells.

"We identified two changes that are important," says Yoshihiro Kawaoka, the senior author of the Nature paper and a virologist at the University of Wisconsin-Madison School of Veterinary Medicine. "Both changes are needed for the H5N1 virus to recognize human receptors."

The new report provides a molecular blueprint for the genetic changes required to transform a virus that only infects birds to a virus capable of easily recognizing human receptors. Receptors are molecules on the surface of cells that permit the virus to dock with the cell and commandeer it to initiate a cascade of infection. By knowing what genetic changes are required for the virus to easily infect human cells, it may be possible to detect the emergence of pandemic strains earlier, providing public health officials and vaccine manufacturers with precious time to prepare for a global outbreak of highly pathogenic influenza. To be successful, a virus must be able to recognize and attach to a host cell. But human and avian influenza viruses recognize different cell receptors. Avian flu viruses have demonstrated an ability to evolve to easily infect humans by exchanging genes with human viruses that subsequently permit them to recognize human receptor molecules and gain easy access to cells, typically in the human respiratory system.

... more about:
»Kawaoka »Mutation »avian »flu »pandemic »receptor

The change is thought to occur when human patients are exposed at the same time to a human flu virus and an avian flu virus. Most viruses, including influenza, readily swap genes with one another.

In the new study, conducted by an international team of researchers, the viruses isolated from human patients in Vietnam and Thailand could recognize both human and avian cell receptors. By contrast, the viruses found in chickens and ducks could only recognize the receptors on avian cells.

The work helps flesh out the changes that have occurred in the worrisome strain of avian influenza virus known as H5N1, a strain some fear could be the organism that will trigger a pandemic of virulent human influenza. The avian virus has already changed dramatically from when it was first identified in 1997, says Kawaoka, who also holds an appointment at the University of Tokyo.

"There are big differences between the virus first found in 1997 and the virus we see now," Kawaoka explains. "We are watching this virus turn itself into a human pathogen."

The mutations found by Kawaoka's group have not yet conferred a complete ability on avian flu to easily recognize the topography of human cells, but they are key steps on that pathway. More mutations, says Kawaoka, will be required for the virus to fully adapt to humans, but it is not known how many mutations are needed for such a change.

However, if scientists are able to continue to monitor and secure viral isolates from humans infected with bird flu, they may be able to map a mutation trajectory that will help predict when the avian virus will cross the threshold to become a human pathogen.

The last two flu pandemics in 1957 and 1968 were caused by avian viruses that had accumulated enough genetic mutations to be considered hybrids of animal and human viruses, Kawaoka notes.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: Kawaoka Mutation avian flu pandemic receptor

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>