Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sticky proteins provide new insight into drug action

16.11.2006
How drugs such as adrenalin do primarily one thing – in this case, increase the heart rate – now makes more sense to scientists.

“Any time you get a sudden jolt, adrenaline (a.k.a. epinephrine) is why your heart rate goes up,” says Dr. Nevin A. Lambert, a biophysicist at the Medical College of Georgia. “If your heart is about to stop and the doctor administers epinephrine, that is what he or she is trying to do.”

New research, to be published in the Nov. 21 print issue of Proceedings of the National Academy of Sciences and already available online in Early Edition, may help explain how cells respond correctly to epinephrine.

Most drugs never get inside cells; they interact with external receptors that activate G proteins roaming inside cells. “If you are going to change the way the cell works, you have to transduce a signal from outside a cell inside,” says Dr. Lambert. “It’s like a relay. G proteins interact with receptors; they run into them, they collide with them. The receptor itself does not do anything other than turn on these G proteins.”

... more about:
»Ion »activate »epinephrine »interact »receptor

There are only four classes of G proteins, but cells contain thousands of copies of them which interact with hundreds of surface receptors. Each G protein is actually three protein subunits stuck together: alpha, beta and gamma.

Textbooks have long said that once G proteins are activated, the alpha protein splits from the beta and gamma subunits, which are irrevocably stuck together as a beta-gamma pair. Each half of the now dissociated G protein can cause the cell to do something different. “Sometimes they help each other out; sometimes they work at cross purposes,” says Dr. Lambert.

With epinephrine, that should mean the alpha subunit enables production of cyclic AMP, which increases the heart rate, while the beta-gamma pair should activate ion channels, making cells less electrically excitable and decreasing the heart rate.

However, it has been known for some time that while epinephrine does increase cyclic AMP in heart cells, it does not activate ion channels. While this situation makes sense because the cell isn’t asked to respond in two completely opposite ways, it has not been at all clear how the cell allows one response and suppresses the other.

That likely is because the G proteins activated by epinephrine receptors don’t readily dissociate, contrary to the textbook picture. MCG researchers have also shown that at least one other class of G proteins does dissociate, suggesting the textbook picture is at least partly correct.

Why the difference? Previous work on G proteins, including the discovery of the G proteins and their role in signal transduction, was mostly done in test tubes using purified proteins. MCG researchers used a technique they developed to actually look at G protein function inside living human cells.

Their findings suggest that epinephrine interacts with a G protein that doesn’t let go of the beta-gamma subunit.

“There was a constant question about how drugs sometimes avoid doing unwanted things,” says Dr. Lambert. “This helps us understand how drugs can be specific. The flipside of the coin is some drugs acting on some receptors will have multiple actions because the G proteins do dissociate.”

No doubt, the newfound information about G proteins is just one step toward better understanding how hundreds of receptors can act through just four classes of G proteins and produce so many physiologic results. “It’s like how can 100 cars drive down four roads and end up in 100 different places,” Dr. Lambert says.

But it’s a timely piece as science moves toward designer drugs, including some that could actually target G proteins directly, bypassing intermediary receptors, with the hope of getting a more robust response.

In Dr. Lambert’s lab, MCG graduate student Gregory J. Digby, first author on the PNAS paper, is now looking at G protein subunits that do and don’t fall apart with the long-range goal of designing ones that do what they want. “Right now, it’s all engineering for the sake of understanding how they work,” says Dr. Lambert.

Researchers suspect it’s literally the stickiness between the subunits that determine whether they split, and that the bottom line will be two classes of G proteins dissociating and two not.

Other co-authors include Robert M. Lober, M.D./Ph.D. student, and Pooja R. Sethi, laboratory technician. Dr. Alfred G. Gilman, longtime chair of pharmacology and now dean of the University of Texas Southwestern Medical School who won the 1994 Nobel Prize in Medicine for discovering G proteins, edited the paper.

The research was funded by the National Science Foundation and the National Institutes of Health.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: Ion activate epinephrine interact receptor

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>