Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Therapy in Diabetes

16.11.2006
The European JDRF Center for Beta Cell Therapy in Diabetes reports in the Proceedings of the National Academy of Sciences of the USA its results on cell transplantation in 22 patients with type 1 diabetes.

These patients had a history of failing insulin production since several years making them dependent on insulin injections; their blood glucose levels had remained difficult to control leading to diverse complications including episodes of hypoglycemia with risk for coma.

The Center’s study indicates the number of donor insulin-producing beta cells that need to be transplanted in order to restore the endogenous insulin production and stop the insulin injections, and to control blood sugar levels and avoid hypoglycemia. One year after transplantation, the injection-free recipients produce considerable amounts of insulin with a maximal capacity that represents one fourth of that in age-matched individuals without diabetes.

These data form a basis for cell therapy in diabetes. They serve as reference for subsequent work that optimizes the combination of beta cell therapy and immune modulating drugs. The goal is to reach a long-term metabolic normalization with minimal side effects of the treatment. The biologic characteristics of the successful grafts are also used as quality control criteria in the Center’s projects on large scale laboratory generation of insulin-producing cells, for example from stem cells.

... more about:
»Insulin »beta »insulin-producing

The JDRF Center for Beta Cell Therapy in Diabetes is an international consortium of basic and clinical departments that is led by professor Daniel Pipeleers of Brussels Free University-VUB. The objective of the Center is to develop strategies for prevention and treatment of diabetes. Its program specifically focuses on the protection, replacement and regeneration of the insulin-producing beta cells (info on www.betacelltherapy.org). The Center is supported by the Juvenile Diabetes Research Foundation (New York- www.jdrf.org) and by the 6th Framework Program of the European Union.

Jan Van Autreve | alfa
Further information:
http://www.betacelltherapy.org

Further reports about: Insulin beta insulin-producing

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>