Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'wires' common in Parkinson's disease now shown in the lab

16.11.2006
The misfolding of proteins in brain cells, commonly seen in Parkinson’s Disease, can be imitated in a laboratory setting very well, on a nanoscale. The fibrils, tiny ‘wires’, formed by proteins present in healthy brain cells, are thus shown to be different from the mutant proteins, only seen in patients suffering from an hereditary form of Parkinson.

Scientists Martijn van Raaij, Ine Segers-Nolten and Vinod Subramaniam of the University of Twente show these clear differences in their publication in Biophysical Journal of this week. Comparable fibrils could play a role in other neurodegenerative diseases like Alzheimer and Creutzfeld Jakob.

The actual cause of Parkinson’s disease is, almost two hundred years after the First publication of the Britisch doctor after whom the disease is named, still unknown. Apart from clinical research among patients, research on a cellular and molecular level is performed. It has already been established that clustering or misfolding of proteins in brain cells plays a crucial role.

Martijn van Raaij, who is a PhD-student within the Biophysical Engineering group of prof Vinod Subramaniam, has looked at this clustering process using an Atomic Force Microscope: a microscope that scans a surface with a tiny needle and is able to visualize individual protein fibrils.

... more about:
»Disease »Parkinson »fibrils

The a-synuclein protein forms fibrils with typical lengths of micrometers. This process of forming of wires is important in the search for causes of Parkinson’s disease and other diseases. Van Raaij’s new results point in that direction as well: he shows morphological differences between fibrils of the proteins almost everyone has in his or her brain cells, and mutant proteins only very rarely shown in families suffering from a hereditary form of Parkinson. These differences in shape are, for example, seen in the diameters and the distance between the peaks the microscope ‘feels’ moving over the surface.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

Further reports about: Disease Parkinson fibrils

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>