Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'wires' common in Parkinson's disease now shown in the lab

16.11.2006
The misfolding of proteins in brain cells, commonly seen in Parkinson’s Disease, can be imitated in a laboratory setting very well, on a nanoscale. The fibrils, tiny ‘wires’, formed by proteins present in healthy brain cells, are thus shown to be different from the mutant proteins, only seen in patients suffering from an hereditary form of Parkinson.

Scientists Martijn van Raaij, Ine Segers-Nolten and Vinod Subramaniam of the University of Twente show these clear differences in their publication in Biophysical Journal of this week. Comparable fibrils could play a role in other neurodegenerative diseases like Alzheimer and Creutzfeld Jakob.

The actual cause of Parkinson’s disease is, almost two hundred years after the First publication of the Britisch doctor after whom the disease is named, still unknown. Apart from clinical research among patients, research on a cellular and molecular level is performed. It has already been established that clustering or misfolding of proteins in brain cells plays a crucial role.

Martijn van Raaij, who is a PhD-student within the Biophysical Engineering group of prof Vinod Subramaniam, has looked at this clustering process using an Atomic Force Microscope: a microscope that scans a surface with a tiny needle and is able to visualize individual protein fibrils.

... more about:
»Disease »Parkinson »fibrils

The a-synuclein protein forms fibrils with typical lengths of micrometers. This process of forming of wires is important in the search for causes of Parkinson’s disease and other diseases. Van Raaij’s new results point in that direction as well: he shows morphological differences between fibrils of the proteins almost everyone has in his or her brain cells, and mutant proteins only very rarely shown in families suffering from a hereditary form of Parkinson. These differences in shape are, for example, seen in the diameters and the distance between the peaks the microscope ‘feels’ moving over the surface.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

Further reports about: Disease Parkinson fibrils

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>