Protein 'wires' common in Parkinson's disease now shown in the lab

Scientists Martijn van Raaij, Ine Segers-Nolten and Vinod Subramaniam of the University of Twente show these clear differences in their publication in Biophysical Journal of this week. Comparable fibrils could play a role in other neurodegenerative diseases like Alzheimer and Creutzfeld Jakob.

The actual cause of Parkinson’s disease is, almost two hundred years after the First publication of the Britisch doctor after whom the disease is named, still unknown. Apart from clinical research among patients, research on a cellular and molecular level is performed. It has already been established that clustering or misfolding of proteins in brain cells plays a crucial role.

Martijn van Raaij, who is a PhD-student within the Biophysical Engineering group of prof Vinod Subramaniam, has looked at this clustering process using an Atomic Force Microscope: a microscope that scans a surface with a tiny needle and is able to visualize individual protein fibrils.

The a-synuclein protein forms fibrils with typical lengths of micrometers. This process of forming of wires is important in the search for causes of Parkinson’s disease and other diseases. Van Raaij’s new results point in that direction as well: he shows morphological differences between fibrils of the proteins almost everyone has in his or her brain cells, and mutant proteins only very rarely shown in families suffering from a hereditary form of Parkinson. These differences in shape are, for example, seen in the diameters and the distance between the peaks the microscope ‘feels’ moving over the surface.

Media Contact

Wiebe van der Veen alfa

More Information:

http://www.utwente.nl

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors