Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist takes Mentos and Coke Craze Into Schools

16.11.2006
A scientist at The University of Manchester is taking her own version of the latest Internet sensation into schools, in a bid to stir up interest in chemistry.

The Coke and Mentos fountain experiment has grabbed worldwide attention, with thousands of people tuning into Eepybird.com (www.eepybird.com) to watch the explosive results of mixing the sweets with the fizzy drink.

Such is the interest in the video – which shows hundreds of large bottles of Diet Coke erupting in sequence – many Internet users have done the experiment themselves, created their own videos and posted them on video sharing site YouTube (www.youtube.com).

Dr Sarah Heath, who is Outreach Director for the School of Chemistry at The University of Manchester, goes into school in the Greater Manchester area to give exciting science demonstrations on solids, liquids and gases.

... more about:
»Coke »Mento »fizzy

And after seeing how the video has captured the imagination of children, she is planning to capitalise on this interest and introduce the spectacular foaming fizzy fountain into her repertoire.

She said: “I mentioned to my daughter that I was looking at doing the Mentos and Diet Coke experiment, and she said all her friends at her school had been talking about it.

“I think it’s a great thing because it’s got children interested in science. We can talk about the chemistry that lies behind it later, but the important thing is to capture their attention in the first place.

Dr Heath already demonstrates how to make flat water fizzy by dissolving carbon dioxide into it. She feels the Coke and Mentos fountain fits nicely into her existing presentation, as it shows the gas coming out again.

The visuals are not dissimilar from an experiment she already performs for pupils, where oxygen is released from hydrogen peroxide to produce a spectacular mass of foaming bubbles.

Scientists and chemists have so far put forward various theories on why Diet Coke reacts so violently when Mentos are added, but Dr Heath feels the rough surface of the sweets plays a big part.

“If you drop anything into a fizzy drink you will get bubbles. For example, with ice you get bubbles but they don’t go mad and shoot out of the glass. If you poor a fizzy drink into a dirty glass, bubbles form around what we call nucleation sites. If the glass is cleaner and smoother, it doesn’t fizz as much.

“When you look at a Mento under a microscope you will see that it’s quite pitted and therefore has lots of nucleation sites, which causes the carbon dioxide to be released. There is probably also a chemical reaction occurring but there is a lot of debate about this.”

On the subject of what would happen to someone who drunk Diet Coke and then ate Mentos, Dr Heath says: “When you open a bottle of Coke and drink it, most of the gas escapes so the reaction would not be as violent. But you might find that you burped more than usual.

“I must stress that people should not try this under any circumstances, but if you drunk a lot of Diet Coke and swallowed a whole packet of Mentos without chewing, that could certainly produce an interesting reaction.”

At present Sarah has only been able to find fruit Mentos to recreate the experiment – but has discovered they work just as well.

Teachers interested in Dr Heath’s science demonstrations should email Sarah.L.Heath@manchester.ac.uk.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps
http://www.youtube.com

Further reports about: Coke Mento fizzy

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>