Lemurs’ fur colour may not define species

Kellie Heckman, from Yale University collaborated with colleagues from other institutions in the USA to sequence a mitochondrial gene called cytochrome b, in 70 mouse lemurs. The lemurs were thought to belong to up to three different species because they live in different forest habitats and have distinctive coat colours.

However, surprisingly, Heckman et al.’s phylogenetic analysis reveals that the 70 lemurs do not differ genetically. According to their cytochrome b sequence, they all belong to the same, previously identified species, Microcebus griseorufus. The authors also show that the three different coat colours observed are found in all three geographical locations in similar proportions. Because they are nocturnal animals, these lemurs tend to depend more on auditory cues or smell to recognise each other, than on visual cues, such as coat colour. This could explain why a certain amount of variation in coat colour does not affect species recognition in mouse lemurs.

The authors of the study recommend caution when identifying new species of lemurs. They conclude that an approach combining morphological, genetic, geographic, and ecological data is the most likely to give an accurate picture of species diversity.

Media Contact

Juliette Savin alfa

More Information:

http://www.biomedcentral.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors