Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lab-on-a-chip could speed up treatment of drug-resistant pneumonia

The emergency treatment of drug-resistant infections with targeted antibiotics is often delayed by the need to identify bacterial strains by growing them in culture first.

At this week's AVS 53rd International Symposium & Exhibition in San Francisco, Michael Lochhead, a bioengineer at the Denver biotechnology company Accelr8, described a new lab-on-a-chip that can identify single bacterial cells for the most common cases of drug-resistant pneumonia, cutting down the wait from days to hours. The technology could also help in the development of new drugs.

The constant bombardment by antibiotics and disinfectants has bred strains of super-bugs that only respond to very specific drugs. These super-bugs often lurk in hospitals, where patients with weakened immune systems can pick up obstinate, life-threatening infections such as pneumonia. "When you get pneumonia in the hospital, you're much more likely to get a resistant strain," Lochhead said. "It's an emerging public-health disaster."

The most acute cases are admitted into intensive care units, where doctors have just days, if not hours, to save the patients' lives, Lochhead said. But reliably identifying the bacterial strain that's causing the infection traditionally requires growing the bugs in culture first, a procedure that can take two to three days. Meanwhile, doctors often have no other option than to start stopgap treatments with broad-spectrum antibiotics.

... more about:
»Lochhead »antibiotics »bacterial »organism »pneumonia

The Accelr8 technology is a "microfluidic" lab-on-a-chip designed to manipulate and analyze bacteria without growing them first. Samples are first washed out of the patient's lungs with saline solution in a procedure called bronchoalveolar lavage. The organisms are then separated, suspended in a specially designed fluid, and pumped into the chip.

Inside the chip, the bacteria flow into several different compartments -- eight in the current version of the chip -- and are made to stick to a bacteria-friendly surface using an electric current. Antibodies then flow in. The antibodies bind specifically to certain strains of bacteria, and mark them with fluorescent dyes of different colors. The dyes color-code cells from known strains. A microscope monitors the viable cells -- those that are still reproducing -- and the rate at which they duplicate helps to identify their species.

In the next step, different antibiotics are pumped into the chambers. If the cells in a chamber stop reproducing, that indicates that a certain drug is likely to be effective at fighting the infection. The death of the bugs is confirmed by checking with a special dye.

Once the bacteria-carrying fluid is injected into the chip, the entire procedure is automatic-- including the counting of fluorescent-marked cells, which is done by a computer -- and takes less than eight hours.

One of the most difficult steps was to design a surface that would be hospitable to the bacteria but that would at the same time keep the antibodies and antibiotics from sticking to it, Lochhead said. While Accelr8 is working on finding a "universal" material that will allow virtually all pathogenic bacteria to stick to it, the company has so far focused on nine bacterial species that cause most of the cases of drug-resistant pneumonia, including Staphylococcus aureus (staph), Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli (E. coli). "If we can characterize the nine panel organisms, we'll cover 80 to 90 percent of hospital-acquired pneumonia cases," Lochhead said.

The company also hopes to apply the technology not just to identifying known strains but also to testing the efficacy of new drugs, or of existing drugs on unknown strains. "Even if you don't know the identity of an organism, if you know which drug works, it's still useful," Lochhead says.

Accelr8, a former software company that refashioned itself into a biotechnology company, plans to place development instruments in collaborating clinical laboratories within a year.

Paper: "Microfluidic Devices That Capture Bacteria for Growth and Kill Analysis," Tuesday, November 14, 2006, 9:40am, Room 2001, AVS 53rd International Symposium & Exhibition, San Francisco, CA, abstract at

Davide Castelvecchi | EurekAlert!
Further information:

Further reports about: Lochhead antibiotics bacterial organism pneumonia

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>