Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New model to aid pancreatic cancer research

Vanderbilt-Ingram Cancer Center researchers have developed a new animal model for pancreatic cancer that exhibits a high degree of similarity to human tumors.

Results from the genetically-engineered mice, published online Nov. 14 in the journal Genes and Development, suggest that the mice could provide new opportunities to investigate targeted chemotherapeutics and screening methods for one of the most deadly cancers.

With a 5-year survival rate of less than 5 percent, pancreatic cancer is one of the most lethal cancers. "Most cases are diagnosed at a late stage when it is incurable," said Hal Moses, M.D., the Hortense B. Ingram Professor of Molecular Oncology, professor of Cancer Biology and senior author on the study.

If appropriate, surgery is the most successful treatment option. However, surgery is usually unable to help patients with advanced disease, and there is currently no effective chemotherapy regimen.

Developing an animal model of pancreatic cancer is essential to identifying new treatment and screening options, but progress has been slow. The first realistic pancreatic cancer model, reported in 2003, involved a mutation in a single gene, called Kras. A mutation in this gene is among the earliest genetic changes observed in human pancreatic cancers. Yet the model does not mimic human disease closely.

"Kras mutation alone is not a very good model because it mainly gives a precursor condition," said Moses. This precursor condition called PanIN (pancreatic intraepithelial neoplasia) rarely progresses to the tumor type seen in humans, called PDAC (pancreatic ductal adenocarcinoma).

Kras mutation is considered a "tumor-initiating" event, but additional mutations in other genes are probably required for progression to a clinically relevant tumor. For the past few years, researchers have been searching for a combination of genetic mutations that recapitulates human pancreatic cancer in animals.

To hopefully improve upon previous models, Moses and colleagues have combined the Kras mutation with a "knock out" of the type II TGFƒÒ receptor (TGFBR2), a component of a signaling pathway that inhibits cell growth. Loss of TGFƒÒ signaling could remove the molecular "checks and balances" on cell growth, allowing unrestrained cell proliferation and tumor formation.

The researchers used a genetic manipulation that allowed them to control these genetic changes in pancreatic cells only. The resulting tumors were localized to the pancreas, with no extraneous tumor formation in other tissues ¡V a problem that has complicated previous models.

"Our model is more aggressive in terms of survival time," said Hideaki Ijichi, M.D., Ph.D., research fellow and lead author on the study. The mice survive approximately two months, reflecting the aggressiveness of human pancreatic tumors.

Also, the microscopic appearance of tumors in the new model more closely resembles that of human tumors.

"Combining the Kras mutation with the TGFBR2 knock-out resulted in 100 percent penetrance in developing tumors that histologically and clinically looks very much like human disease," said Moses.

"A certain percentage (of the previous models) have a sarcomatoid histology, which is very rare in humans," Ijichi said. "Our model has almost no sarcomatoid histology."

Ijichi and Moses are planning to use the new model to test targeted drug therapies and identify possible screening methods that could be used for early detection of pancreatic cancer ¡V something that is sorely lacking for humans.

Progress is indeed picking up in the field. Publishing in the same issue of the journal, a research group from Harvard University reports the development of another pancreatic cancer mouse model. Ronald DePinho, M.D., and colleagues combined the same Kras mutation with a "knockout" of a downstream component of the TGFƒÒ pathway, called Smad4.

While the Smad4 mutations are more commonly found in humans than mutations in the TGFBR2, the mice developed by DePinho and colleagues did not show the PDAC histology observed in Moses' mice.

Just why a mutation that is more common clinically would induce tumors that are unlike human cancers is unclear, Moses said.

"We really want to know the underlying mechanism of pancreatic carcinogenesis," said Ijichi. And these new animal models now provide researchers with two additional tools with which to investigate this problem.

Heather Newman | EurekAlert!
Further information:

Further reports about: KRAS Researchers pancreatic pancreatic cancer

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>