Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model to aid pancreatic cancer research

15.11.2006
Vanderbilt-Ingram Cancer Center researchers have developed a new animal model for pancreatic cancer that exhibits a high degree of similarity to human tumors.

Results from the genetically-engineered mice, published online Nov. 14 in the journal Genes and Development, suggest that the mice could provide new opportunities to investigate targeted chemotherapeutics and screening methods for one of the most deadly cancers.

With a 5-year survival rate of less than 5 percent, pancreatic cancer is one of the most lethal cancers. "Most cases are diagnosed at a late stage when it is incurable," said Hal Moses, M.D., the Hortense B. Ingram Professor of Molecular Oncology, professor of Cancer Biology and senior author on the study.

If appropriate, surgery is the most successful treatment option. However, surgery is usually unable to help patients with advanced disease, and there is currently no effective chemotherapy regimen.

Developing an animal model of pancreatic cancer is essential to identifying new treatment and screening options, but progress has been slow. The first realistic pancreatic cancer model, reported in 2003, involved a mutation in a single gene, called Kras. A mutation in this gene is among the earliest genetic changes observed in human pancreatic cancers. Yet the model does not mimic human disease closely.

"Kras mutation alone is not a very good model because it mainly gives a precursor condition," said Moses. This precursor condition called PanIN (pancreatic intraepithelial neoplasia) rarely progresses to the tumor type seen in humans, called PDAC (pancreatic ductal adenocarcinoma).

Kras mutation is considered a "tumor-initiating" event, but additional mutations in other genes are probably required for progression to a clinically relevant tumor. For the past few years, researchers have been searching for a combination of genetic mutations that recapitulates human pancreatic cancer in animals.

To hopefully improve upon previous models, Moses and colleagues have combined the Kras mutation with a "knock out" of the type II TGFƒÒ receptor (TGFBR2), a component of a signaling pathway that inhibits cell growth. Loss of TGFƒÒ signaling could remove the molecular "checks and balances" on cell growth, allowing unrestrained cell proliferation and tumor formation.

The researchers used a genetic manipulation that allowed them to control these genetic changes in pancreatic cells only. The resulting tumors were localized to the pancreas, with no extraneous tumor formation in other tissues ¡V a problem that has complicated previous models.

"Our model is more aggressive in terms of survival time," said Hideaki Ijichi, M.D., Ph.D., research fellow and lead author on the study. The mice survive approximately two months, reflecting the aggressiveness of human pancreatic tumors.

Also, the microscopic appearance of tumors in the new model more closely resembles that of human tumors.

"Combining the Kras mutation with the TGFBR2 knock-out resulted in 100 percent penetrance in developing tumors that histologically and clinically looks very much like human disease," said Moses.

"A certain percentage (of the previous models) have a sarcomatoid histology, which is very rare in humans," Ijichi said. "Our model has almost no sarcomatoid histology."

Ijichi and Moses are planning to use the new model to test targeted drug therapies and identify possible screening methods that could be used for early detection of pancreatic cancer ¡V something that is sorely lacking for humans.

Progress is indeed picking up in the field. Publishing in the same issue of the journal, a research group from Harvard University reports the development of another pancreatic cancer mouse model. Ronald DePinho, M.D., and colleagues combined the same Kras mutation with a "knockout" of a downstream component of the TGFƒÒ pathway, called Smad4.

While the Smad4 mutations are more commonly found in humans than mutations in the TGFBR2, the mice developed by DePinho and colleagues did not show the PDAC histology observed in Moses' mice.

Just why a mutation that is more common clinically would induce tumors that are unlike human cancers is unclear, Moses said.

"We really want to know the underlying mechanism of pancreatic carcinogenesis," said Ijichi. And these new animal models now provide researchers with two additional tools with which to investigate this problem.

Heather Newman | EurekAlert!
Further information:
http://www.vanderbilt.edu

Further reports about: KRAS Researchers pancreatic pancreatic cancer

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>