Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins may behave differently in natural environments

15.11.2006
When in an environment similar to that in which they exist naturally, proteins and multiprotein assemblies may demonstrate actions or dynamics different than those they exhibit when in the static form in which they are most often studied, said researchers at Baylor College of Medicine in a report in the current issue of the journal Structure.

In a study using electron cryomicroscopy, Dr. Steven Ludtke, assistant professor of biochemistry and molecular biology and co-director of the National Center for Macromolecular Imaging at BCM, and colleagues from BCM and The University of Texas Southwestern Medical Center in Dallas, found such dynamic behavior in a mutant form of a protein called GroEL, which chaperones or helps misfolded protein molecules fold into the shape that allows them to achieve their purpose in the cells. Misfolded proteins have been implicated in a number of neurodegenerative and other diseases.

Electron cryomicroscopy allows scientists to take very detailed two-dimensional images of individual molecules in a native-like environment. Then, using computers and the science of computational biology, they assemble tens of thousands of such images into three-dimensional models that demonstrate the dynamics of the proteins.

When Ludtke and his colleagues followed this procedure with the GroEL mutant with its sister-protein, GroES, they were surprised. Two of the structures were as they expected, but the third was "a strange-looking structure blown up like a balloon," he said.

... more about:
»Environment »GroEL »behave

"This sort of expansion has never been observed before," he said.

In terms of native GroEL, the finding may indicate the need to look at the chaperone itself more closely.

"The expansion was directly related to the function of the assembly. From a more global perspective, this is strong evidence that we need to study how any macromolecule behaves in a solution environment."

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Environment GroEL behave

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>