Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proteins may behave differently in natural environments

When in an environment similar to that in which they exist naturally, proteins and multiprotein assemblies may demonstrate actions or dynamics different than those they exhibit when in the static form in which they are most often studied, said researchers at Baylor College of Medicine in a report in the current issue of the journal Structure.

In a study using electron cryomicroscopy, Dr. Steven Ludtke, assistant professor of biochemistry and molecular biology and co-director of the National Center for Macromolecular Imaging at BCM, and colleagues from BCM and The University of Texas Southwestern Medical Center in Dallas, found such dynamic behavior in a mutant form of a protein called GroEL, which chaperones or helps misfolded protein molecules fold into the shape that allows them to achieve their purpose in the cells. Misfolded proteins have been implicated in a number of neurodegenerative and other diseases.

Electron cryomicroscopy allows scientists to take very detailed two-dimensional images of individual molecules in a native-like environment. Then, using computers and the science of computational biology, they assemble tens of thousands of such images into three-dimensional models that demonstrate the dynamics of the proteins.

When Ludtke and his colleagues followed this procedure with the GroEL mutant with its sister-protein, GroES, they were surprised. Two of the structures were as they expected, but the third was "a strange-looking structure blown up like a balloon," he said.

... more about:
»Environment »GroEL »behave

"This sort of expansion has never been observed before," he said.

In terms of native GroEL, the finding may indicate the need to look at the chaperone itself more closely.

"The expansion was directly related to the function of the assembly. From a more global perspective, this is strong evidence that we need to study how any macromolecule behaves in a solution environment."

Graciela Gutierrez | EurekAlert!
Further information:

Further reports about: Environment GroEL behave

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>