Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins may behave differently in natural environments

15.11.2006
When in an environment similar to that in which they exist naturally, proteins and multiprotein assemblies may demonstrate actions or dynamics different than those they exhibit when in the static form in which they are most often studied, said researchers at Baylor College of Medicine in a report in the current issue of the journal Structure.

In a study using electron cryomicroscopy, Dr. Steven Ludtke, assistant professor of biochemistry and molecular biology and co-director of the National Center for Macromolecular Imaging at BCM, and colleagues from BCM and The University of Texas Southwestern Medical Center in Dallas, found such dynamic behavior in a mutant form of a protein called GroEL, which chaperones or helps misfolded protein molecules fold into the shape that allows them to achieve their purpose in the cells. Misfolded proteins have been implicated in a number of neurodegenerative and other diseases.

Electron cryomicroscopy allows scientists to take very detailed two-dimensional images of individual molecules in a native-like environment. Then, using computers and the science of computational biology, they assemble tens of thousands of such images into three-dimensional models that demonstrate the dynamics of the proteins.

When Ludtke and his colleagues followed this procedure with the GroEL mutant with its sister-protein, GroES, they were surprised. Two of the structures were as they expected, but the third was "a strange-looking structure blown up like a balloon," he said.

... more about:
»Environment »GroEL »behave

"This sort of expansion has never been observed before," he said.

In terms of native GroEL, the finding may indicate the need to look at the chaperone itself more closely.

"The expansion was directly related to the function of the assembly. From a more global perspective, this is strong evidence that we need to study how any macromolecule behaves in a solution environment."

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: Environment GroEL behave

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>