Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A key antibody, IgG, links cells' capture and disposal of germs

15.11.2006
Immunological powerhouse unites phagosomes that corral germs, lysosomes that kill them

Scientists have found a new task managed by the antibody that's the workhorse of the human immune system: Inside cells, Immunoglobulin G (IgG) helps bring together the phagosomes that corral invading pathogens and the potent lysosomes that eventually kill off the germs.

The research, by Axel Nohturfft at Harvard University and colleagues at Harvard, Massachusetts General Hospital, and the Massachusetts Institute of Technology, appears this week in the Proceedings of the National Academy of Sciences.

"The IgG class of antibodies is a critical part of the human immune system, guarding us against infection by an endless array of microorganisms," says Nohturfft, associate professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences. "Our findings add yet another immunological task to the list of those handled by IgG."

... more about:
»IGG »Nohturfft »germs »lysosomes »phagosomes

While just one of several broad classes of human antibodies, IgG is by far the most important -- so much so that patients incapable of making their own antibodies to fight off infections are routinely treated with IgG alone. Broadly speaking, the immunological powerhouse manages the processes by which cells isolate and then kill invading microbes, viruses, and other antigens.

In a process called phagocytosis, intruding germs are first swallowed up by amoeba-like white blood cells and stored in membrane pouches called phagosomes. These compartments then fuse with lysosomes, toxic cellular reservoirs that kill and degrade the sequestered antigens by flooding the phagosomes with acid and destructive proteins.

IgG, Nohturfft and his colleagues report, plays a key role in this merger of phagosomes and lysosomes into the so-called phagolysosomes that finally do in most invading microbes. Specifically, the antibody prompts phagosomes and lysosomes to dock and bind to each other with actin filaments, the first step in the unification of the two vesicles.

Among the antibody's other known roles, Nohturfft's group has now shown that IgG serves to accelerate the creation of phagolysosomes. Under physiological conditions, the scientists found that latex beads coated with IgG formed phagolysosomes in just a third the time it took the cellular machinery to process uncoated beads, 15 minutes versus 45 minutes.

"This process is central to the human immune response," Nohturfft says. "But some of the most destructive microbial pathogens, such as those responsible for tuberculosis and salmonellosis, are able to hijack cells and use them as a breeding ground precisely because they block the merger of phagosomes and lysosomes. It had long been known that coating these germs with IgG can restore their destruction and our recent results reveal a new branch of this IgG-led counterattack."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: IGG Nohturfft germs lysosomes phagosomes

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>