Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T for two: scientists show how immune system chooses best way to fight infection

15.11.2006
A new study has suggested a novel way of combating diseases related to the immune system, including cancer and autoimmune diseases such as type I diabetes and arthritis. The study, funded by the Wellcome Trust, appears online in the journal Nature.

T cells are produced by the body to fight infection. Scientists previously identified two types of T cell, both produced in the thymus: "effector T cells", which attack infected cells, and "regulatory T cells", which suppress the immune system, protecting the body from inflammatory damage during infection. Regulatory T cells, if given to individuals receiving transplants, may help suppress the rejection response.

Now, a team of researchers has discovered a novel mechanism determining whether a maturing T cell is likely to emerge from the thymus as an effector cell or a regulatory cell. The research suggests that new treatments could be developed to deliberately affect the type of T cells produced, allowing scientists to tackle a number of diseases which are influenced by these different types of T cells.

"Our team has shown that a process known as 'trans-conditioning', which we knew to be involved in T cell development, actually has a profound influence on whether a T cell becomes an effector or a regulatory cell," explains Professor Adrian Hayday of King's College London. "This may be clinically significant; if we can find a way to influence this process, it may be possible to make the body produce effector T cells in a cancer patient or regulatory T cells in someone suffering from autoimmune disease, both of which are caused by the immune system malfunctioning."

... more about:
»College »Infection »T cells »effector »immune »regulatory

Professor Hayday and his team believe that the findings may also answer one of medical research's mysteries: why autoimmune diseases in women commonly go into remission in pregnancy.

"We believe that trans-conditioning is less active during pregnancy," says Professor Hayday. "This means that most T cells emerging at that time will be regulatory. Regulatory T cells prevent an over-active immune system from causing inflammatory damage to the body. This may be one of the key steps in preventing the mother from rejecting the foetus growing inside her."

The research was carried out at the King's College London School of Medicine at Guy’s Hospital and was co-lead by Dr Daniel Pennington, a Wellcome Trust VIP awardee and now at Queen Mary, University of London. Collaborating researchers were based at Faculdade de Medicina de Lisboa, Lisbon; University College, London; Yale University School of Medicine; Institute for Animal Health; and Imperial College London.

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature05368.html

Further reports about: College Infection T cells effector immune regulatory

More articles from Life Sciences:

nachricht Bacterial control mechanism for adjusting to changing conditions: How do bacteria adapt?
13.12.2017 | Technische Universität München

nachricht Cellular Self-Digestion Process Triggers Autoimmune Disease
13.12.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>