Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers developing molecular delivery vehicles for genetic therapies

14.11.2006
Researchers at New York University are working to develop molecular delivery vehicles that can be used to transport nucleic acids into diverse cell types, which may lead to eventual applications in genetic therapies. Their work is described as part of the cover story in the Nov. 13 issue of the American Chemical Society publication Chemical and Engineering News.

Scientists have been exploring RNA interference (RNAi) as a gene therapy technique to silence genes that are improperly produced. The "RNAi" approach requires the delivery into the cell of short pieces of the genetic material Ribonucleic Acid (RNA).

These synthetic short RNA "oligos" can then pair with specific sites in the cell's own RNA, targeting the genetic messages for destruction and turning off expression of the corresponding genes. However, the widespread clinical use of this genetic therapy relies upon technical improvements, including new delivery vehicles such as the one Kent Kirshenbaum, an assistant professor in NYU's Department of Chemistry, and colleagues present in their work.

The NYU researchers use a modular linear molecule to deliver therapeutic RNA into cells. The molecule has a positively charged site that forms favorable stabilizing interactions with the negatively charged RNA, and a fatty component that interacts with cell membranes. The molecules and RNA form complexes, which protect the RNA from being degraded and deliver it to cells. As a result, the targeted deleterious genes are silenced.

... more about:
»Genetic »RNA »delivery

Their research concentrates on making the transition from the lab into real-life smoother. Their linear molecule can be used to deliver small therapeutic RNAs into cell types that are much more representative of cellular targets that investigators are likely to encounter in clinical situations.

Kirshenbaum and his coworkers are now focused on understanding the physical chemical characteristics that give enhanced activity to their molecule, and then use the knowledge to generate a set of more sophisticated delivery reagents for siRNA.

"Our goal is to develop a platform that would allow us to create a library that could be used in different settings or for delivery to different cell types," he told Chemical and Engineering News.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Genetic RNA delivery

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>