Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers developing molecular delivery vehicles for genetic therapies

14.11.2006
Researchers at New York University are working to develop molecular delivery vehicles that can be used to transport nucleic acids into diverse cell types, which may lead to eventual applications in genetic therapies. Their work is described as part of the cover story in the Nov. 13 issue of the American Chemical Society publication Chemical and Engineering News.

Scientists have been exploring RNA interference (RNAi) as a gene therapy technique to silence genes that are improperly produced. The "RNAi" approach requires the delivery into the cell of short pieces of the genetic material Ribonucleic Acid (RNA).

These synthetic short RNA "oligos" can then pair with specific sites in the cell's own RNA, targeting the genetic messages for destruction and turning off expression of the corresponding genes. However, the widespread clinical use of this genetic therapy relies upon technical improvements, including new delivery vehicles such as the one Kent Kirshenbaum, an assistant professor in NYU's Department of Chemistry, and colleagues present in their work.

The NYU researchers use a modular linear molecule to deliver therapeutic RNA into cells. The molecule has a positively charged site that forms favorable stabilizing interactions with the negatively charged RNA, and a fatty component that interacts with cell membranes. The molecules and RNA form complexes, which protect the RNA from being degraded and deliver it to cells. As a result, the targeted deleterious genes are silenced.

... more about:
»Genetic »RNA »delivery

Their research concentrates on making the transition from the lab into real-life smoother. Their linear molecule can be used to deliver small therapeutic RNAs into cell types that are much more representative of cellular targets that investigators are likely to encounter in clinical situations.

Kirshenbaum and his coworkers are now focused on understanding the physical chemical characteristics that give enhanced activity to their molecule, and then use the knowledge to generate a set of more sophisticated delivery reagents for siRNA.

"Our goal is to develop a platform that would allow us to create a library that could be used in different settings or for delivery to different cell types," he told Chemical and Engineering News.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Genetic RNA delivery

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>