Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers developing molecular delivery vehicles for genetic therapies

14.11.2006
Researchers at New York University are working to develop molecular delivery vehicles that can be used to transport nucleic acids into diverse cell types, which may lead to eventual applications in genetic therapies. Their work is described as part of the cover story in the Nov. 13 issue of the American Chemical Society publication Chemical and Engineering News.

Scientists have been exploring RNA interference (RNAi) as a gene therapy technique to silence genes that are improperly produced. The "RNAi" approach requires the delivery into the cell of short pieces of the genetic material Ribonucleic Acid (RNA).

These synthetic short RNA "oligos" can then pair with specific sites in the cell's own RNA, targeting the genetic messages for destruction and turning off expression of the corresponding genes. However, the widespread clinical use of this genetic therapy relies upon technical improvements, including new delivery vehicles such as the one Kent Kirshenbaum, an assistant professor in NYU's Department of Chemistry, and colleagues present in their work.

The NYU researchers use a modular linear molecule to deliver therapeutic RNA into cells. The molecule has a positively charged site that forms favorable stabilizing interactions with the negatively charged RNA, and a fatty component that interacts with cell membranes. The molecules and RNA form complexes, which protect the RNA from being degraded and deliver it to cells. As a result, the targeted deleterious genes are silenced.

... more about:
»Genetic »RNA »delivery

Their research concentrates on making the transition from the lab into real-life smoother. Their linear molecule can be used to deliver small therapeutic RNAs into cell types that are much more representative of cellular targets that investigators are likely to encounter in clinical situations.

Kirshenbaum and his coworkers are now focused on understanding the physical chemical characteristics that give enhanced activity to their molecule, and then use the knowledge to generate a set of more sophisticated delivery reagents for siRNA.

"Our goal is to develop a platform that would allow us to create a library that could be used in different settings or for delivery to different cell types," he told Chemical and Engineering News.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Genetic RNA delivery

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>