Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers developing molecular delivery vehicles for genetic therapies

14.11.2006
Researchers at New York University are working to develop molecular delivery vehicles that can be used to transport nucleic acids into diverse cell types, which may lead to eventual applications in genetic therapies. Their work is described as part of the cover story in the Nov. 13 issue of the American Chemical Society publication Chemical and Engineering News.

Scientists have been exploring RNA interference (RNAi) as a gene therapy technique to silence genes that are improperly produced. The "RNAi" approach requires the delivery into the cell of short pieces of the genetic material Ribonucleic Acid (RNA).

These synthetic short RNA "oligos" can then pair with specific sites in the cell's own RNA, targeting the genetic messages for destruction and turning off expression of the corresponding genes. However, the widespread clinical use of this genetic therapy relies upon technical improvements, including new delivery vehicles such as the one Kent Kirshenbaum, an assistant professor in NYU's Department of Chemistry, and colleagues present in their work.

The NYU researchers use a modular linear molecule to deliver therapeutic RNA into cells. The molecule has a positively charged site that forms favorable stabilizing interactions with the negatively charged RNA, and a fatty component that interacts with cell membranes. The molecules and RNA form complexes, which protect the RNA from being degraded and deliver it to cells. As a result, the targeted deleterious genes are silenced.

... more about:
»Genetic »RNA »delivery

Their research concentrates on making the transition from the lab into real-life smoother. Their linear molecule can be used to deliver small therapeutic RNAs into cell types that are much more representative of cellular targets that investigators are likely to encounter in clinical situations.

Kirshenbaum and his coworkers are now focused on understanding the physical chemical characteristics that give enhanced activity to their molecule, and then use the knowledge to generate a set of more sophisticated delivery reagents for siRNA.

"Our goal is to develop a platform that would allow us to create a library that could be used in different settings or for delivery to different cell types," he told Chemical and Engineering News.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Genetic RNA delivery

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>