Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New way to combat cancer

In many forms of cancer the tumor encounters a lack of oxygen, a condition that the tumor tries to prevent in various ways.

A research group with its base at Lund University in Sweden is now presenting findings that may make it possible to attack the tumor precisely via these defense mechanisms in the future

The natural thing for tissue to do when there is a lack of oxygen is to try to stimulate the formation of new blood vessels in the area. Tumors adapt in this way, too. Two substances that are key to this process are called HIF-1 and HIF-2 (hypoxia inducible factors). Both help the tumor create new blood vessels.

HIF-1 has been an object of interest to scientists for several years and is already seen as a treatment target in the drug industry. Under the direction of Professor Sven Påhlman, researchers at Lund University together with colleagues at the Karolinska Institute and in Valencia have now managed to show that HIF-2 also plays a crucial role in the reaction of the tumor. Their studies of the pediatric tumor neuroblastoma show that HIF-1 plays the most important role initially, whereas HIF-2 is of greater importance if the lack of oxygen is prolonged.

... more about:
»HIF-1 »HIF-2 »Oxygen »blood vessel

"In other words, merely attacking HIF-1 might not be enough. You need a treatment that knocks out both factors," says Sven Påhlman.

The supply of oxygen to tumors is a complex and partly controversial chapter in cancer care. Many drugs now on their way to market aim to stop the flow of oxygen to the tumor in order to get them to die. But the principle is not always easy to put into practice. The flow of oxygen to the tumor must be eliminated completely­-a tumor that 'merely' experiences a shortage of oxygen risks becoming even more aggressive.

"One reason for this is that the tumor gets help from HIF-1 and HIF-2, for instance, to stimulate the growth of new blood vessels. Through these vessels they can release cells that lead to metastases, daughter growths in other parts of the body. Another reason is that oxygen-deprived tumors become more resistant to both chemotherapy and radiation," explains Sven Påhlman.

His research team has now been able to demonstrate that high levels of HIF-2 in the pediatric tumor neuroblastoma are associated with a poor prognosis. It should therefore be possible to use the level of HIF-2 as a marker for the diagnosis and prognosis of neuroblastoma. It should also be feasible to develop the blocking of HIF-2 into a future treatment of the disease. The researchers have carried out experiments on laboratory animals to this effect and have attained favorable results

The discovery is being honored with a cover illustration in the international journal Cancer Cell.

Ingela Björck | idw
Further information:

Further reports about: HIF-1 HIF-2 Oxygen blood vessel

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>