Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pourquié Lab Identifies Genes Involved in Formation of Vertebral Precursors

14.11.2006
Mary Lee Dequeant, Ph.D., a Predoctoral Researcher at the Stowers Institute for Medical Research, and Olivier Pourquié, Ph.D., Stowers Institute Investigator and an investigator with the Howard Hughes Medical Institute, are the first and last authors, respectively, on a paper that identifies a network of cyclic genes that shed light on the molecular basis of spine formation in the embryo.

The paper was published on Science Express, the advanced publication Web site of Science Magazine on Nov. 9, 2006.

Dr. Pourquié’s lab has long studied the formation of the spine and the role of an internal mechanism — the clock oscillator — that regulates the formation somites, the precursors of vertebrae. In their most recent findings, the team used the mouse model to demonstrate how the clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator.

“Our findings shed light on a fundamental aspect of the architecture of the spine by demonstrating the implication of a large network of genes involved in controlling the periodicity of the production of vertebral precursors in the embryo,” said Dr. Pourquié.

... more about:
»Pourquié »Stowers Institute »oscillator

“I’m excited about this work because mutation of the genes involved in the segmentation clock oscillator can cause crippling diseases in humans, such as congenital scoliosis,” said Dr. Dequeant. “Our work identified many novel genes associated to the oscillator whose mutation could lead to such disease.”

Additional contributing authors from the Stowers Institute include Earl Glynn, Scientific Programmer; Karin Gaudenz, Research Specialist I; Matthias Wahl, Postdoctoral Research Associate; Jie Chen, Visiting Scientist; and Arcady Mushegian, Director of Bioinformatics Center.

Dr. Pourquié holds an appointment as an Associate Professor in the Department of Pathology & Laboratory Medicine at The University of Kansas School of Medicine.

About the Stowers Institute

Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing and curing disease. The Institute was founded by Jim and Virginia Stowers, two cancer survivors who have created combined endowments of $2 billion in support of basic research of the highest quality.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

Further reports about: Pourquié Stowers Institute oscillator

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>