Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explore function of 'junk DNA'

14.11.2006
University of Iowa scientists have made a discovery that broadens understanding of a rapidly developing area of biology known as functional genomics and sheds more light on the mysterious, so-called "junk DNA" that makes up the majority of the human genome.

The team, led by Beverly Davidson, Ph.D., a Roy J. Carver Biomedical Research Chair in Internal Medicine and UI professor of internal medicine, physiology and biophysics, and neurology, have discovered a new mechanism for the expression of microRNAs -- short segments of RNA that do not give rise to a protein, but do play a role in regulating protein production.

In their study, Davidson and colleagues not only discovered that microRNAs could be expressed in a different way than previously known, they also found that some of the junk DNA is not junk at all, but instead consists of sequences that can generate microRNAs.

Davidson and her colleagues, including Glen Borchert, a graduate student in her lab, investigated how a set of microRNAs in the human genome is turned on, or expressed. In contrast to original assertions, they discovered that the molecular machinery used to express these microRNAs is different than that used to express RNA that encodes proteins. Expression of the microRNAs required an enzyme called RNA Polymerase III (Pol III) rather than the RNA Polymerase II (Pol II), which mediates expression of RNA that encode proteins. The study is published in Nature Structural and Molecular Biology Advance Online Publication (AOP) on Nov. 12.

... more about:
»DNA »MicroRNAs »RNA »discovered »non-coding

"MicroRNAs are being shown to play roles in cancer and in normal development, so learning how these microRNAs are expressed may give us insight into these critical biological processes," said Borchert, who is lead author of the study. "Up to now it's been understood that one enzyme controls their expression, and we now show that in some cases it's a completely different one."

Genes that code for proteins make up only a tiny fraction of the human genome. The function of the remaining non-coding sequence is just beginning to be unraveled. In fact, until very recently, much of the non-coding sequence was dismissed as junk DNA. In 1998, scientists discovered that some DNA produced small pieces of non-coding RNA that could turn off, or silence, genes. This discovery won Andrew Fire and Craig Mello the 2006 Nobel Prize for medicine or physiology. Since their discovery, the field has exploded and small, non-coding RNAs have been shown to play an important role in development and disease in ways that scientists are only just beginning to understand.

"Not so many years ago our understanding was that DNA was transcribed to RNA, which was then translated to protein. Now we know that the levels of control are much more varied and that many RNAs don't make protein, but instead regulate the expression of proteins," Davidson explained. "Non-coding RNA like microRNAs represent a set of refined control switches, and understanding how microRNAs work and how they are themselves controlled is likely to be very important in many areas of biology and medicine."

Over 450 microRNAs have been identified in the human genome. Learning how they are turned on and in what cells and what they do, may allow scientists to turn that knowledge to their advantage as a medical tool.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu
http://www.medicine.uiowa.edu/davidsonlab/bio.htm

Further reports about: DNA MicroRNAs RNA discovered non-coding

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>