Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted cancer drugs may work by disrupting balance of cellular signals

14.11.2006
Study supports new model of drug action that may explain problems, suggest new approaches

Targeted cancer therapy drugs like Gleevec (imatinib) and Tarceva (erlotinib), which destroy tumors by interfering with specific proteins or protein pathways, may disrupt the balance between critical cellular signals in a way that leads to cell death.

In the November issue of Cancer Cell, researchers from the Massachusetts General Hospital Cancer Center present evidence for their theory, which runs counter to an alternative hypothesis called "oncogene addiction." Better understanding these drugs' mechanism of operation could help surmount current limitations on their usefulness and lead to the discovery of additional protein targets.

"It looks like these drugs reduce the activity of their target proteins in such a way that cell-death signals remain high while survival signals drop," says Jeffrey Settleman, PhD, director of the Center for Molecular Therapeutics at the MGH Cancer Center, senior author of the report. "This model gives us clues that could lead to more successful treatment strategies and answer questions about the limited effectiveness these drugs have had."

... more about:
»Cellular »EGFR »Kinase »Mutation »oncogene »survival

It has become apparent that certain forms of cancer depend on mutations in specific genes, called oncogenes, for their development and survival. These include the EGFR gene in non-small-cell lung cancer and a gene called BCR-ABL in leukemia. Both of those genes code for proteins called kinases, which regulate the processing of key cellular signals.

The cancer-associated mutations overactivate the kinases in ways that lead to the uncontrolled growth of a tumor.

Drugs that have been specifically designed to interfere with the activity of these kinases – Gleevec targets the BCR-ABL protein and both Tarceva and Iressa (gefitinib) inhibit EGFR activity – have been very successful in limited numbers of patients. But as yet researchers have not understood the molecular mechanism underlying these drugs' activity, information that might expand their usefulness to a broader patient population and address problems of resistance that can develop. The "oncogene addiction" theory proposes that the internal circuitry of tumor cells becomes so reliant on the oncogenic protein or the pathway it controls that the cells die if kinase activity is suppressed.

Since kinases controls two types of cellular signals – some leading to cellular survival, others to cell death – the MGH team proposed an alternative explanation: that survival signals drop quickly after kinase activity is suppress, releasing their control over persistant cell-death signals. To test this hypothesis, they conducted several experiments using oncogene-expressing cell lines. In lines expressing tumor-associated versions of BCR-ABL, EGFR, or another kinase called Src, the survival-associated signals dropped quickly after kinase activity was suppressed, while cell-death signals were maintained.

Because the oncogenes had been artificially introduced into those cell lines, the researchers then tested their model in human lung cancer cells with the EGFR mutation. Again, kinase suppression, this time by application of Iressa, produced a rapid reduction in survival signals and eventual cell death as cell-death signals rose. A subsequent experiment with the Src cell line showed that cells pushed into a malignant form by expression of the mutant kinase could survive after Src activity was suppressed if a survival signal was supplied from another source, implying that the cells are not totally dependent on the oncogene's activity.

"While all of these drugs have different targets, they appear to act in a similar way, causing a reduction in survival-promoting proteins while apoptotic [cell-death promoting] signals persist and drive the cells towards death," Settleman says. "We suggest that the term 'oncogenic shock' may be a more accurate way to describe a process in which the very thing that kept the tumor alive – overexpression of a kinase – is turned against itself when the balance is disrupted to allow the cell-death signals to predominate."

The new model also could explain why targeted drugs have not worked well in combination with standard chemotherapy drugs, which shut down the cell cycle and may actually halt the cell-death process, he adds. And if survival and apoptotic signals do drop and recover at different rates, giving these medications in a cyclic fashion, rather than continuously as currently prescribed, might better take advantage of the temporal windows of vulnerability and could possibly avoid drug resistance. Drugs that target the survival and cell death signals themselves may present another new strategy.

"These findings explain why activated kinases are such good targets and support the importance of searching for more," adds Settleman, a professor of Medicine at Harvard Medical School. "More than 500 kinases have been identified, but we only have a half-dozen targeted kinase inhibitors. Finding new treatment targets and identifying the patients whose tumors have those kinases may bring us closer to the goal of truly personalized cancer treatment."

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

Further reports about: Cellular EGFR Kinase Mutation oncogene survival

More articles from Life Sciences:

nachricht Proteins with different evolutionary histories now do the same job
21.06.2018 | Eberhard Karls Universität Tübingen

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>