Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailored treatments: Promising designer drug provides new insight into cancer biology

14.11.2006
Scientists are making progress toward unraveling the molecular mysteries that underlie cancer progression and treatment resistance.

Two studies in the November 2006 issue of the journal Cancer Cell, published by Cell Press, provide mechanistic details that may explain why the small-molecule chemical ABT-737 is emerging as a unique and effective anticancer agent. The studies also demonstrate that pharmacological manipulation of specific signaling molecules can make resistant cancer cells sensitive to treatment with ABT-737. These studies provide support for the idea that examination of the molecular profile of individual tumors can provide useful information for guiding treatment decisions.

Cell survival molecules like BCL-2 are abnormally regulated and overactive in many tumors and are thought to promote cancer progression and protect cancer cells from cancer therapies. In normal cells, BH3 proteins bind to and inhibit BCL-2. Therefore, researchers have attempted to design compounds that are similar to these natural antagonists to use as weapons against cancer cells. The synthetic BH3 mimetic ABT-737 has been shown to interact strongly with BCL-2 but weakly with other BCL-2 family members, such as MCL-1, and has been described as an excellent candidate for further research.

Dr. Michael Andreeff from The University of Texas M.D. Anderson Cancer Center and colleagues found that ABT-737 effectively kills acute myeloid leukemia (AML) cells without affecting normal blood cells. However, the researchers observed that cancer cells with high levels of the cell survival molecule MCL-1 were much less sensitive to ABT-737 treatment. Further experiments demonstrated that pharmacologic inhibition of MCL-1 or inhibition of MCL-1 through RNA interference restored sensitivity of leukemic cells and definitively identified MCL-1 as an ABT-737 resistance factor. The researchers suggest that specific BCL-2 family proteins may define resistance to this BH3 mimetic.

... more about:
»ABT-737 »BH3 »Bcl-2 »Cancer »cancer cells

In a separate study, Dr. David C.S. Huang from The Walter and Eliza Hall Institute of Medical Research in Australia and colleagues demonstrated that resistant cells can be sensitized to ABT-737 by using varied approaches that destabilize or inactivate MCL-1. Dr. Huang's group concludes that ABT-737 should be effective against tumors that exhibit BCL-2 overexpression and low MCL-1 levels or when used in combination with MCL-1 inhibitors. "The mechanistic insights provided here suggest ways in which ABT-737 might be used efficaciously as a single agent and in combination therapy. Our studies provide a rational basis for designing clinical trials of this highly promising agent and a benchmark for systematically evaluating BH3 mimetic compounds," writes Dr. Huang.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

Further reports about: ABT-737 BH3 Bcl-2 Cancer cancer cells

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>