Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Please Exhale - Quick and easy breath analysis

14.11.2006
When we drink alcohol, its “flag” precedes us, and enjoyment of large amounts of garlic or onion can often be detected by others the next morning.

However, our breath does not only betray what we have consumed; some diseases also produce telltale breath odors. Breath analysis has some interesting advantages for clinical diagnosis, for example, unlike drawing blood, it requires no puncture. However, it has proven to be difficult.

The complexity of the equipment is considerable, the samples require complex preparation before the actual analysis can take place, and until now only small, volatile compounds have been reliably detected. Swiss researchers have now developed a mass-spectrometric method to quickly and easily obtain a proper fingerprint of breath, including the quantitative detection of large, nonvolatile compounds.

Renato Zenobi and his team at the ETH in Zurich have based their new method on quadrupole time-of-flight mass spectrometry (QTOF). In this method, molecules are electrically charged and then separated and identified according to their molecular weight. In a QTOF machine, molecules are accelerated in an electrical field. The time-of-flight component separates the molecules according to their mass-to-charge ratio. The time it takes the fragments to fly to the detector depends on their masses. The quadrupole may be used to fragment the molecules before they enter the TOF part. The instrument generates a spectrum of fragments that is characteristic of the original molecule and identifies it.

... more about:
»Analysis »Fragment »breath

The crucial new twist to Zenobi’s method is the way the sample is inserted into the mass spectrometer. Usually, samples are first extracted and the resulting liquid is atomized with an electric field. Instead, Zenobi’s team carries out a direct droplet-droplet extraction: the breath sample is led into the electrospray array, where it crosses a stream of charged reagent drops that absorb and charge the molecules of interest. During their journey into the mass spectrometer, the droplets lose their solvent and continuously fragment until nothing is left but the charged molecules, which then proceed into the QTOF mass spectrometer. This allows the analysis to be carried out continuously over longer periods of time so that larger samples can be examined. The samples do not need to be prepared, which reduces loss. Most importantly, in contrast to current methods, the droplet components of the breath samples, which contain the larger, nonvolatile substances, are also included. This allows traces of these compounds to be detected and quantified.

The urea content of breath samples after different meals can, for example, lead to conclusions about the metabolic processes involved. Likewise, information about smokers’ metabolism of nicotine is also accessible.

Renato Zenobi | alfa
Further information:
http://www.ethz.ch
http://www3.interscience.wiley.com/cgi-bin/jabout/26737/press/200644press.html

Further reports about: Analysis Fragment breath

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>