Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Please Exhale - Quick and easy breath analysis

14.11.2006
When we drink alcohol, its “flag” precedes us, and enjoyment of large amounts of garlic or onion can often be detected by others the next morning.

However, our breath does not only betray what we have consumed; some diseases also produce telltale breath odors. Breath analysis has some interesting advantages for clinical diagnosis, for example, unlike drawing blood, it requires no puncture. However, it has proven to be difficult.

The complexity of the equipment is considerable, the samples require complex preparation before the actual analysis can take place, and until now only small, volatile compounds have been reliably detected. Swiss researchers have now developed a mass-spectrometric method to quickly and easily obtain a proper fingerprint of breath, including the quantitative detection of large, nonvolatile compounds.

Renato Zenobi and his team at the ETH in Zurich have based their new method on quadrupole time-of-flight mass spectrometry (QTOF). In this method, molecules are electrically charged and then separated and identified according to their molecular weight. In a QTOF machine, molecules are accelerated in an electrical field. The time-of-flight component separates the molecules according to their mass-to-charge ratio. The time it takes the fragments to fly to the detector depends on their masses. The quadrupole may be used to fragment the molecules before they enter the TOF part. The instrument generates a spectrum of fragments that is characteristic of the original molecule and identifies it.

... more about:
»Analysis »Fragment »breath

The crucial new twist to Zenobi’s method is the way the sample is inserted into the mass spectrometer. Usually, samples are first extracted and the resulting liquid is atomized with an electric field. Instead, Zenobi’s team carries out a direct droplet-droplet extraction: the breath sample is led into the electrospray array, where it crosses a stream of charged reagent drops that absorb and charge the molecules of interest. During their journey into the mass spectrometer, the droplets lose their solvent and continuously fragment until nothing is left but the charged molecules, which then proceed into the QTOF mass spectrometer. This allows the analysis to be carried out continuously over longer periods of time so that larger samples can be examined. The samples do not need to be prepared, which reduces loss. Most importantly, in contrast to current methods, the droplet components of the breath samples, which contain the larger, nonvolatile substances, are also included. This allows traces of these compounds to be detected and quantified.

The urea content of breath samples after different meals can, for example, lead to conclusions about the metabolic processes involved. Likewise, information about smokers’ metabolism of nicotine is also accessible.

Renato Zenobi | alfa
Further information:
http://www.ethz.ch
http://www3.interscience.wiley.com/cgi-bin/jabout/26737/press/200644press.html

Further reports about: Analysis Fragment breath

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>