Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Please Exhale - Quick and easy breath analysis

14.11.2006
When we drink alcohol, its “flag” precedes us, and enjoyment of large amounts of garlic or onion can often be detected by others the next morning.

However, our breath does not only betray what we have consumed; some diseases also produce telltale breath odors. Breath analysis has some interesting advantages for clinical diagnosis, for example, unlike drawing blood, it requires no puncture. However, it has proven to be difficult.

The complexity of the equipment is considerable, the samples require complex preparation before the actual analysis can take place, and until now only small, volatile compounds have been reliably detected. Swiss researchers have now developed a mass-spectrometric method to quickly and easily obtain a proper fingerprint of breath, including the quantitative detection of large, nonvolatile compounds.

Renato Zenobi and his team at the ETH in Zurich have based their new method on quadrupole time-of-flight mass spectrometry (QTOF). In this method, molecules are electrically charged and then separated and identified according to their molecular weight. In a QTOF machine, molecules are accelerated in an electrical field. The time-of-flight component separates the molecules according to their mass-to-charge ratio. The time it takes the fragments to fly to the detector depends on their masses. The quadrupole may be used to fragment the molecules before they enter the TOF part. The instrument generates a spectrum of fragments that is characteristic of the original molecule and identifies it.

... more about:
»Analysis »Fragment »breath

The crucial new twist to Zenobi’s method is the way the sample is inserted into the mass spectrometer. Usually, samples are first extracted and the resulting liquid is atomized with an electric field. Instead, Zenobi’s team carries out a direct droplet-droplet extraction: the breath sample is led into the electrospray array, where it crosses a stream of charged reagent drops that absorb and charge the molecules of interest. During their journey into the mass spectrometer, the droplets lose their solvent and continuously fragment until nothing is left but the charged molecules, which then proceed into the QTOF mass spectrometer. This allows the analysis to be carried out continuously over longer periods of time so that larger samples can be examined. The samples do not need to be prepared, which reduces loss. Most importantly, in contrast to current methods, the droplet components of the breath samples, which contain the larger, nonvolatile substances, are also included. This allows traces of these compounds to be detected and quantified.

The urea content of breath samples after different meals can, for example, lead to conclusions about the metabolic processes involved. Likewise, information about smokers’ metabolism of nicotine is also accessible.

Renato Zenobi | alfa
Further information:
http://www.ethz.ch
http://www3.interscience.wiley.com/cgi-bin/jabout/26737/press/200644press.html

Further reports about: Analysis Fragment breath

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>