Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PSB to co-ordinate Industrial-Academic Partnership programme (Transvac) in international biomedical portfolio management

14.11.2006
Fondazione Parco Biomedico San Raffaele is to co-ordinate the European commission Marie Curie Industry-Academia Partnership project ‘Transvac’ in International Biomedical Portfolio management.

Through the secondment of Business Development Managers in the participating centres Transvac aims to find an effective way to manage biomedical research alliances across the European continent and generate an active portfolio of projects with high potential for creating knowledge and value which will be actively managed. Specifically it aims to develop a pipeline of portfolio projects that are actively managed and supported between the centres classified as:

-Fundamental research or clinical projects based on existing R&D synergies and projects
or
- Applied industrial research projects based on existing R&D synergies and projects to significantly advance the development of a potential revenue generating product

Effort will be focused on regenerative therapies and research in musculo-skeletal, cardiological and neurological disorders, utilising the expertise and insights of the participants in cell therapies, biopharmaceuticals and biomaterial/polymer and nano-based biopharmaceutical delivery to generate an early stage to pre-clinical/clinical phase I pipeline of projects.

Significant effort will be dedicated to the inclusion of SME’s in the applied industrial projects, as partners, customers for the intellectual property with the long-term aim of out-licensing the inventions to large industry.

Partners in the project are:

Fondazione Parco Biomedico San Raffaele (PSB)

Located approximately 15 km south of Rome in a natural reserve, the science park was created by the Banca di Roma, the Chamber of Commerce of Rome, and the Fondazione San Raffaele Monte Tabor in response to the recognised need to have a biomedical research centre in the Lazio region. Opened in 2002, the park is now home to 3 companies and 9 research groups from Universities and centres working in: Stem cells, Oncology, leukaemia and Immunology; Molecular cardiology; Skeletal regeneration; Cell therapy and tissue engineering; Muscular dystrophies; Biomedical quality control; Neurological Disorders and Diabetes. The infrastructure permits the development of concept to preclinical development based on the state-of-the-art facilities including a animal facility encompassing conventional and SPF small animals and a large animal surgery unit.

The Cambridge University Centre for Brain Repair (http://www.brc.cam.ac.uk) contains 14 scientific groups, with research interests in stem cell biology, neurodegeneration, neuroprotection, demyelination, remyelination, axon regeneration, plasticity, neural transplantation, clinical neurology and neurosurgery. In axon regeneration there are two approaches. 1) Axon regeneration after CNS injury is blocked by the formation of a glial scar. The major inhibitory molecules in the glial scar are chondroitin sulphate proteoglycans. The group is studying methods of removing proteoglycans, preventing their synthesis and of modifying the scarring process to prevent the appearance of inhibitory molecules. 2) Adult CNS axons have a very poor intrinsic ability to regenerate their axons after damage which correlates with poor ability to regenerate the growth cone on the end of a cut axon. Growth cone regeneration requires new protein synthesis inside the axon at the site of axotomy. CNS axons lack protein synthesis machinery. Expertise in glial cell biology, axon growth assays, models of brain and spinal cord damage, behavioural assays of spinal cord and brain function, extra cellular matrix biochemistry, axonal transport and protein synthesis, time lapse studies of axon growth. Facilities for animal behavioural studies, lesion models, imaging, neurodegenerative conditions, neural transplantation, stem cell biology, clinical studies in Parkinsons disease, Huntingtons disease, multiple sclerosis, head injury, stroke, rehabilitation.

Dando & Colucci is a management company, specialising in facilitating the development, financing and implementation of life science based innovation ‘clusters’ or science parks by providing tailored insight and management, offering tactical and strategic management to permit correct financial management, leveraging of resources, positioning of clusters/parks on the whole value chain associated with research and development. This stretches from fundamental research through to partnering at the time of real value creation. As such their expertise includes: Internal due diligence to ISO 9001 quality standards; Consortium development and partner recruitment; Fund raising and identification of potential financial backers; Elaboration and negotiation of detailed scientific and development plan; Executive and project management; Consortium operational development and organisation; Resource and technical evaluation; Business development and market analysis; Financial co-ordination and reporting, and Intellectual property management co-ordination.

Centres working with Dando and Colucci LLC managers as part of the project are:

The Institute of Chemical Science and Engineering, EPFL Lausanne, (http://lmrp.epfl.ch/) works in regenerative medicine and pharmacobiology, specialises in chemical engineering polymeric biomaterials, in tissue engineering using stem cells as building blocks. DNA oligos, recombinant proteins and synthetic peptides are designed and expressed to encompass many functions: the ability to be chemically cross linked with an exogenous agent, the ability to be degraded by cell-derived proteases, the ability to support and promote cell migration, and the ability to bind to and slowly release growth factors. These materials are being developed as biosynthetic matrices and nano-vessicles for tissue regeneration. By virtue of the precise design that is possible, one may independently control the rates of cell infiltration, degradation, remodelling, etc., by making changes in the amino acid sequence of the protein polymer. In addition most degradable biomaterials degrade by non-enzymatic hydrolysis. This is in stark contrast to all natural biological degradation, which is precisely regulated by cell-derived proteases. Research facilities include cell biology, molecular biology and peptide and protein chemistry, organic and polymer synthesis, small animal surgery and pharmacology and a fully equipped laboratory for synthesis and characterization of organic polymeric biomaterials, including analytical and preparative HPLC, differential scanning calorimetry, FT-IR spectroscopy, mass spectrometry, rotary evaporators, UV/Vis spectroscopy, automated peptide synthesizer, photo documentation station, preparative FPLC, RT-PCR.

ECRIN (http://www.ecrin.org) is based on the interconnection of national networks of clinical research centres (CRCs) and clinical trial units (CTUs) the European Clinical Research Infrastructures Network (ECRIN) programme is designed to develop an infrastructure allowing for bottom-up harmonisation of support, training, and practice of clinical research. ECRIN aims at providing public or private (mainly biotechnology SME) sponsors with a support for translational research and multicentre clinical studies in Europe. The ECRIN consortium is based on national networks of CRC / CTUs together with the European Forum for Good Clinical Practice (EFGCP).

A major objective of ECRIN consists of stimulating and facilitating the creation of Centres and National Networks, especially in the new member states, for their subsequent connection to the European network. Connecting these national networks within a broad European network will contribute to the critical mass at the European level needed for the implement of European standards and training regarding clinical research. The European Consortium of clinical research infrastructures currently includes 8 networks of CRCs and CTUs, covering 6 European countries representing 260 million citizens (Denmark, France, Germany, Italy, Spain, and Sweden), and constituting 112 different medical centres and hospitals conducting 1500 clinical studies.

Jonathan Dando | alfa
Further information:
http://www.scienceparkrome.org

Further reports about: Axon Biology CRC Development ECRIN Regeneration cell biology synthesis

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>