Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Path – Two Effects: Immune System uses DNA Repair Mechanism to Boost Defence

14.11.2006
Every day our immune system has to repel numerous pathogens. For this purpose defence cells produce specific antibodies which are tailored exactly to a particular pathogen. Since there are millions of different pathogens, many of which are extremely variable as well, this is an enormous challenge.

How does the immune system manage to keep pace with this diversity? For the first time scientists from the GSF – Research Centre for Environment and Health and the Max-Planck-Institute for Biochemistry in Martinsried could show that a molecular mechanism which is normally needed to repair damaged DNA pieces makes cells of the immune system particularly variable, so that they can react flexibly to a wide range of pathogens.

Certain defence cells of the immune system, the B-cells, are responsible for the production of specific antibodies. “These cells are the only body cells which can change their DNA by hypermutation, so that they form antibodies which are specifically tailored to the respective pathogen,” Prof. Jean-Marie Buerstedde, the Director of the GSF Institute of Molecular Radiation Biology, explains. Hypermutation is understood to be a considerably elevated mutation rate. The genes coding for specific antibodies mutate one million times more frequently than the genes of other cells.

It has been known for a long time that hypermutation is triggered by the enzyme AID. “AID is the master gene for hypermutation,” Buerstedde explains. It is B-cell-specific and causes a particular base of the DNA to be converted into another. This “wrong” base is then cut out of the DNA, which eventually creates a base gap. Buerstedde and his colleagues have now been able to prove that the following steps of the hypermutation make use of a mechanism which is also responsible for repairing damaged DNA. If the B-cell DNA is incomplete, the protein PCNA will be linked with another protein, ubiquitin – this mechanism activates certain emergency enzymes which mend the base gap as repair enzymes. PCNA ubiquitination also comes into action in normal body cells when the DNA is damaged: in this case, however, this mechanism ensures that DNA damage is repaired in a quick-fix procedure during the replication of the DNA. “Thus, PCNA ubiquitination is necessary both for DNA repair and for hypermutation,” Buerstedde explains.

PCNA ubiquitination in B-cells results in high mutation rates, since the emergency enzymes activated by this mechanism are highly likely to build not the original, but a different base into the DNA – the consequence being a point mutation. Several of these point mutations raise the affinity of the antibodies to a particular antigen and thus make the antibodies produced more effective. By antigen binding those B-cells are selected, which best bind the antigen and can, therefore, combat it most intensively. The remaining cells will die.

Thus, the immune system has tailored the path of PCNA ubiquitination for the use in B-cells for itself in such a way that high mutation rates occur in certain parts of the antibody genes. “On the one hand this is positive, because variable antibodies result. On the other hand, there is also the risk that uncontrolled mutations on wrong genes will contribute to the development of B-cell cancer. Therefore, the exploration of this path is of medical relevance,” Buerstedde emphasizes, “but for a geneticist it is just as exciting to realize that vertebrates adopted a path for the antigen-specific immune response, which has existed since primeval times”.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2006/buerstedde_en.php

Further reports about: Antibodies B-cell Buerstedde DNA Hypermutation Mutation PCNA enzyme ubiquitination

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>