Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Path – Two Effects: Immune System uses DNA Repair Mechanism to Boost Defence

14.11.2006
Every day our immune system has to repel numerous pathogens. For this purpose defence cells produce specific antibodies which are tailored exactly to a particular pathogen. Since there are millions of different pathogens, many of which are extremely variable as well, this is an enormous challenge.

How does the immune system manage to keep pace with this diversity? For the first time scientists from the GSF – Research Centre for Environment and Health and the Max-Planck-Institute for Biochemistry in Martinsried could show that a molecular mechanism which is normally needed to repair damaged DNA pieces makes cells of the immune system particularly variable, so that they can react flexibly to a wide range of pathogens.

Certain defence cells of the immune system, the B-cells, are responsible for the production of specific antibodies. “These cells are the only body cells which can change their DNA by hypermutation, so that they form antibodies which are specifically tailored to the respective pathogen,” Prof. Jean-Marie Buerstedde, the Director of the GSF Institute of Molecular Radiation Biology, explains. Hypermutation is understood to be a considerably elevated mutation rate. The genes coding for specific antibodies mutate one million times more frequently than the genes of other cells.

It has been known for a long time that hypermutation is triggered by the enzyme AID. “AID is the master gene for hypermutation,” Buerstedde explains. It is B-cell-specific and causes a particular base of the DNA to be converted into another. This “wrong” base is then cut out of the DNA, which eventually creates a base gap. Buerstedde and his colleagues have now been able to prove that the following steps of the hypermutation make use of a mechanism which is also responsible for repairing damaged DNA. If the B-cell DNA is incomplete, the protein PCNA will be linked with another protein, ubiquitin – this mechanism activates certain emergency enzymes which mend the base gap as repair enzymes. PCNA ubiquitination also comes into action in normal body cells when the DNA is damaged: in this case, however, this mechanism ensures that DNA damage is repaired in a quick-fix procedure during the replication of the DNA. “Thus, PCNA ubiquitination is necessary both for DNA repair and for hypermutation,” Buerstedde explains.

PCNA ubiquitination in B-cells results in high mutation rates, since the emergency enzymes activated by this mechanism are highly likely to build not the original, but a different base into the DNA – the consequence being a point mutation. Several of these point mutations raise the affinity of the antibodies to a particular antigen and thus make the antibodies produced more effective. By antigen binding those B-cells are selected, which best bind the antigen and can, therefore, combat it most intensively. The remaining cells will die.

Thus, the immune system has tailored the path of PCNA ubiquitination for the use in B-cells for itself in such a way that high mutation rates occur in certain parts of the antibody genes. “On the one hand this is positive, because variable antibodies result. On the other hand, there is also the risk that uncontrolled mutations on wrong genes will contribute to the development of B-cell cancer. Therefore, the exploration of this path is of medical relevance,” Buerstedde emphasizes, “but for a geneticist it is just as exciting to realize that vertebrates adopted a path for the antigen-specific immune response, which has existed since primeval times”.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2006/buerstedde_en.php

Further reports about: Antibodies B-cell Buerstedde DNA Hypermutation Mutation PCNA enzyme ubiquitination

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>