Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One Path – Two Effects: Immune System uses DNA Repair Mechanism to Boost Defence

14.11.2006
Every day our immune system has to repel numerous pathogens. For this purpose defence cells produce specific antibodies which are tailored exactly to a particular pathogen. Since there are millions of different pathogens, many of which are extremely variable as well, this is an enormous challenge.

How does the immune system manage to keep pace with this diversity? For the first time scientists from the GSF – Research Centre for Environment and Health and the Max-Planck-Institute for Biochemistry in Martinsried could show that a molecular mechanism which is normally needed to repair damaged DNA pieces makes cells of the immune system particularly variable, so that they can react flexibly to a wide range of pathogens.

Certain defence cells of the immune system, the B-cells, are responsible for the production of specific antibodies. “These cells are the only body cells which can change their DNA by hypermutation, so that they form antibodies which are specifically tailored to the respective pathogen,” Prof. Jean-Marie Buerstedde, the Director of the GSF Institute of Molecular Radiation Biology, explains. Hypermutation is understood to be a considerably elevated mutation rate. The genes coding for specific antibodies mutate one million times more frequently than the genes of other cells.

It has been known for a long time that hypermutation is triggered by the enzyme AID. “AID is the master gene for hypermutation,” Buerstedde explains. It is B-cell-specific and causes a particular base of the DNA to be converted into another. This “wrong” base is then cut out of the DNA, which eventually creates a base gap. Buerstedde and his colleagues have now been able to prove that the following steps of the hypermutation make use of a mechanism which is also responsible for repairing damaged DNA. If the B-cell DNA is incomplete, the protein PCNA will be linked with another protein, ubiquitin – this mechanism activates certain emergency enzymes which mend the base gap as repair enzymes. PCNA ubiquitination also comes into action in normal body cells when the DNA is damaged: in this case, however, this mechanism ensures that DNA damage is repaired in a quick-fix procedure during the replication of the DNA. “Thus, PCNA ubiquitination is necessary both for DNA repair and for hypermutation,” Buerstedde explains.

PCNA ubiquitination in B-cells results in high mutation rates, since the emergency enzymes activated by this mechanism are highly likely to build not the original, but a different base into the DNA – the consequence being a point mutation. Several of these point mutations raise the affinity of the antibodies to a particular antigen and thus make the antibodies produced more effective. By antigen binding those B-cells are selected, which best bind the antigen and can, therefore, combat it most intensively. The remaining cells will die.

Thus, the immune system has tailored the path of PCNA ubiquitination for the use in B-cells for itself in such a way that high mutation rates occur in certain parts of the antibody genes. “On the one hand this is positive, because variable antibodies result. On the other hand, there is also the risk that uncontrolled mutations on wrong genes will contribute to the development of B-cell cancer. Therefore, the exploration of this path is of medical relevance,” Buerstedde emphasizes, “but for a geneticist it is just as exciting to realize that vertebrates adopted a path for the antigen-specific immune response, which has existed since primeval times”.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2006/buerstedde_en.php

Further reports about: Antibodies B-cell Buerstedde DNA Hypermutation Mutation PCNA enzyme ubiquitination

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>