Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ten thousand years of testing in one year

Which chemicals are best suited to be used as drugs? The use of a computer simulation to find out saves time, money – and animal lives.

Developing new medicines is usually a long and costly process. Now, methods are being developed at Norwegian University of Science and Technology – that allow some of the testing required in drug development that normally take years to complete to be done in just a fraction of the time. With the help of mathematical calculations and computer simulations, researchers can quickly find out if a substance has the qualities and characteristics of an effective drug before it is tested in the real world.


Chemical researcher Kristin Tøndel believes that the new method she is developing has promise. “Right now we are looking into new treatments for cancer. We started with more than 250,000 chemical compounds. From this foundation we identified about 1,200 compounds that we wanted to test further. After one year we are left with eight compounds that we hope can form the basis for a new medicine. It is clear that without computer simulation, it would have been impossible for us to start with such a wide range of compounds. If we were to test these substances experimentally in a laboratory, we might have managed perhaps 20-40 substances in a year. In other words, it would have taken us 10,000 years to test these 250,000 chemical compounds using traditional methods.

“The use of traditional tests would have meant excluding compounds that from the beginning did not look promising, but that still might have turned out to have great potential. Using our method we can test a far greater number of chemicals. Use of our method also eventually means that a much smaller number of chemicals need to be actually tested, and the likelihood that the chemicals being tested will be effective also increases dramatically.”


The computer programme, which has been developed from a widely available software programme, simulates the effects that chemical compounds have on the body.

“My research is focussed on the development of new cures for cancer, specifically, finding chemical compounds that attach themselves to proteins involved in the growth and spread of cancer cells.We are trying to find chemical compounds that ‘trick’ the protein into believing that it is attached to the body’s own material. If we find such a compound, we can prevent the protein from aiding in the growth of the cancerous cells, and we are well on our way to developing a new medicine”, Tøndel explains. Hercomputer programme can simulate how different compounds interact with proteins, in order to identify promising candidates for new drugs.


The method was initially used in chemistry for calculating smaller molecular structures. Researchers discovered that it could also be used in calculations for larger molecules, like protein structures. A protein is made up of chains of what are called amino acids. Today, the structures of many proteins have already been determined experimentally, and can be found in large databases available on the Internet.

“Other researchers use similar methods, but we have developed it further, so that we can even test protein structures that have not yet been determined experimentally. We simply model the protein using the structure of a related protein as a starting point. Our method is especially adapted to such protein models. Hence, we can also simulate the effects that different chemicals have on the protein, and if they are appropriate for laboratory testing”, Tøndel explains. The method can also be used in other medical research fields, such as HIV/AIDS research.


The main disadvantage of the new method is that not all chemicals are physically tested, so there is no definitive answer as to whether or not they would actually work.

“We run the risk of discarding compounds through simulation that in practice could have proven to be effective, but I think the benefits of our method far outweigh the disadvantages. We can develop new medicines faster, less expensively, and more effectively. Another important benefit is that the method reduces the need for animal testing, and ultimately human testing, because only compounds we really have faith in will be the subject of practical tests. This is important, particularly from an ethical standpoint”, Tøndel says.

Nina Tveter | alfa
Further information:

Further reports about: Researcher Substance Testing Tøndel compound protein structure structure

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>