Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ten thousand years of testing in one year

14.11.2006
Which chemicals are best suited to be used as drugs? The use of a computer simulation to find out saves time, money – and animal lives.

Developing new medicines is usually a long and costly process. Now, methods are being developed at Norwegian University of Science and Technology – that allow some of the testing required in drug development that normally take years to complete to be done in just a fraction of the time. With the help of mathematical calculations and computer simulations, researchers can quickly find out if a substance has the qualities and characteristics of an effective drug before it is tested in the real world.

ACCURATE

Chemical researcher Kristin Tøndel believes that the new method she is developing has promise. “Right now we are looking into new treatments for cancer. We started with more than 250,000 chemical compounds. From this foundation we identified about 1,200 compounds that we wanted to test further. After one year we are left with eight compounds that we hope can form the basis for a new medicine. It is clear that without computer simulation, it would have been impossible for us to start with such a wide range of compounds. If we were to test these substances experimentally in a laboratory, we might have managed perhaps 20-40 substances in a year. In other words, it would have taken us 10,000 years to test these 250,000 chemical compounds using traditional methods.

“The use of traditional tests would have meant excluding compounds that from the beginning did not look promising, but that still might have turned out to have great potential. Using our method we can test a far greater number of chemicals. Use of our method also eventually means that a much smaller number of chemicals need to be actually tested, and the likelihood that the chemicals being tested will be effective also increases dramatically.”

TRICKS BAD PROTEINS

The computer programme, which has been developed from a widely available software programme, simulates the effects that chemical compounds have on the body.

“My research is focussed on the development of new cures for cancer, specifically, finding chemical compounds that attach themselves to proteins involved in the growth and spread of cancer cells.We are trying to find chemical compounds that ‘trick’ the protein into believing that it is attached to the body’s own material. If we find such a compound, we can prevent the protein from aiding in the growth of the cancerous cells, and we are well on our way to developing a new medicine”, Tøndel explains. Hercomputer programme can simulate how different compounds interact with proteins, in order to identify promising candidates for new drugs.

FROM CHEMISTRY TO MEDICINE

The method was initially used in chemistry for calculating smaller molecular structures. Researchers discovered that it could also be used in calculations for larger molecules, like protein structures. A protein is made up of chains of what are called amino acids. Today, the structures of many proteins have already been determined experimentally, and can be found in large databases available on the Internet.

“Other researchers use similar methods, but we have developed it further, so that we can even test protein structures that have not yet been determined experimentally. We simply model the protein using the structure of a related protein as a starting point. Our method is especially adapted to such protein models. Hence, we can also simulate the effects that different chemicals have on the protein, and if they are appropriate for laboratory testing”, Tøndel explains. The method can also be used in other medical research fields, such as HIV/AIDS research.

ETHICAL BENEFITS

The main disadvantage of the new method is that not all chemicals are physically tested, so there is no definitive answer as to whether or not they would actually work.

“We run the risk of discarding compounds through simulation that in practice could have proven to be effective, but I think the benefits of our method far outweigh the disadvantages. We can develop new medicines faster, less expensively, and more effectively. Another important benefit is that the method reduces the need for animal testing, and ultimately human testing, because only compounds we really have faith in will be the subject of practical tests. This is important, particularly from an ethical standpoint”, Tøndel says.

Nina Tveter | alfa
Further information:
http://www.ntnu.no

Further reports about: Researcher Substance Testing Tøndel compound protein structure structure

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>