Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ten thousand years of testing in one year

14.11.2006
Which chemicals are best suited to be used as drugs? The use of a computer simulation to find out saves time, money – and animal lives.

Developing new medicines is usually a long and costly process. Now, methods are being developed at Norwegian University of Science and Technology – that allow some of the testing required in drug development that normally take years to complete to be done in just a fraction of the time. With the help of mathematical calculations and computer simulations, researchers can quickly find out if a substance has the qualities and characteristics of an effective drug before it is tested in the real world.

ACCURATE

Chemical researcher Kristin Tøndel believes that the new method she is developing has promise. “Right now we are looking into new treatments for cancer. We started with more than 250,000 chemical compounds. From this foundation we identified about 1,200 compounds that we wanted to test further. After one year we are left with eight compounds that we hope can form the basis for a new medicine. It is clear that without computer simulation, it would have been impossible for us to start with such a wide range of compounds. If we were to test these substances experimentally in a laboratory, we might have managed perhaps 20-40 substances in a year. In other words, it would have taken us 10,000 years to test these 250,000 chemical compounds using traditional methods.

“The use of traditional tests would have meant excluding compounds that from the beginning did not look promising, but that still might have turned out to have great potential. Using our method we can test a far greater number of chemicals. Use of our method also eventually means that a much smaller number of chemicals need to be actually tested, and the likelihood that the chemicals being tested will be effective also increases dramatically.”

TRICKS BAD PROTEINS

The computer programme, which has been developed from a widely available software programme, simulates the effects that chemical compounds have on the body.

“My research is focussed on the development of new cures for cancer, specifically, finding chemical compounds that attach themselves to proteins involved in the growth and spread of cancer cells.We are trying to find chemical compounds that ‘trick’ the protein into believing that it is attached to the body’s own material. If we find such a compound, we can prevent the protein from aiding in the growth of the cancerous cells, and we are well on our way to developing a new medicine”, Tøndel explains. Hercomputer programme can simulate how different compounds interact with proteins, in order to identify promising candidates for new drugs.

FROM CHEMISTRY TO MEDICINE

The method was initially used in chemistry for calculating smaller molecular structures. Researchers discovered that it could also be used in calculations for larger molecules, like protein structures. A protein is made up of chains of what are called amino acids. Today, the structures of many proteins have already been determined experimentally, and can be found in large databases available on the Internet.

“Other researchers use similar methods, but we have developed it further, so that we can even test protein structures that have not yet been determined experimentally. We simply model the protein using the structure of a related protein as a starting point. Our method is especially adapted to such protein models. Hence, we can also simulate the effects that different chemicals have on the protein, and if they are appropriate for laboratory testing”, Tøndel explains. The method can also be used in other medical research fields, such as HIV/AIDS research.

ETHICAL BENEFITS

The main disadvantage of the new method is that not all chemicals are physically tested, so there is no definitive answer as to whether or not they would actually work.

“We run the risk of discarding compounds through simulation that in practice could have proven to be effective, but I think the benefits of our method far outweigh the disadvantages. We can develop new medicines faster, less expensively, and more effectively. Another important benefit is that the method reduces the need for animal testing, and ultimately human testing, because only compounds we really have faith in will be the subject of practical tests. This is important, particularly from an ethical standpoint”, Tøndel says.

Nina Tveter | alfa
Further information:
http://www.ntnu.no

Further reports about: Researcher Substance Testing Tøndel compound protein structure structure

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>