Key to acute lung injury lies in Ang2 protein

The study, which was completed in the laboratory of senior author Jack Elias, M.D., the Waldemar Von Zedtwitz Professor and chair of internal medicine at Yale, looked at the response to hyperoxic acute lung injury (HALI), first in mice and then in human adults and babies. The team found that mice in which the Ang2 gene was genetically eliminated or silenced lived longer and had evidence of decreased lung injury compared to mice in which the gene and protein were intact.

Levels of the Ang2 protein were then measured in the blood and lung fluid of adult patients and babies with acute lung damage and pulmonary edema. The team found that levels of Ang2, which is known to increase leaks in blood vessels and causes the death of endothelial cells that line the blood vessels, were higher in adult patients with acute lung injury and in babies born with respiratory distress syndrome who either went on to develop bronchopulmonary dysplasia or died.

“Mice without Ang2 seemed to be protected against hyperoxia,” said first author Vineet Bhandari, M.D., assistant professor of pediatrics at Yale School of Medicine. “This protein seems to be a mediator of cell death in the settings of high oxygen concentrations in the lung causing acute lung injury and pulmonary edema.”

Bhandari said the study is an example of true bench-to-bedside translational research. “All the work was initially done on mice in which we found that the Ang2 protein was involved in HALI,” said Bhandari. “We also defined how the protein creates lung injury and then we showed its clinical relevance by documenting its presence in human patients with acute lung injury.”

In addition to acute lung injury and pulmonary edema, Bhandari said, an increase in Ang2 and cell death can be seen in other disorders such as heart attacks, stroke, eye disease in diabetics and brain tumors.

Media Contact

Karen N. Peart EurekAlert!

More Information:

http://www.yale.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors