Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key to acute lung injury lies in Ang2 protein

Acute lung injury caused by cell death, high and potentially toxic concentrations of oxygen (hyperoxia), and the resulting excess fluid in the lungs (pulmonary edema), may be controlled by modulating levels of the angiopoietin2 (Ang2) protein, researchers at Yale School of Medicine report in the November 5 online issue of Nature Medicine.

The study, which was completed in the laboratory of senior author Jack Elias, M.D., the Waldemar Von Zedtwitz Professor and chair of internal medicine at Yale, looked at the response to hyperoxic acute lung injury (HALI), first in mice and then in human adults and babies. The team found that mice in which the Ang2 gene was genetically eliminated or silenced lived longer and had evidence of decreased lung injury compared to mice in which the gene and protein were intact.

Levels of the Ang2 protein were then measured in the blood and lung fluid of adult patients and babies with acute lung damage and pulmonary edema. The team found that levels of Ang2, which is known to increase leaks in blood vessels and causes the death of endothelial cells that line the blood vessels, were higher in adult patients with acute lung injury and in babies born with respiratory distress syndrome who either went on to develop bronchopulmonary dysplasia or died.

"Mice without Ang2 seemed to be protected against hyperoxia," said first author Vineet Bhandari, M.D., assistant professor of pediatrics at Yale School of Medicine. "This protein seems to be a mediator of cell death in the settings of high oxygen concentrations in the lung causing acute lung injury and pulmonary edema."

... more about:
»Ang2 »Protein »edema

Bhandari said the study is an example of true bench-to-bedside translational research. "All the work was initially done on mice in which we found that the Ang2 protein was involved in HALI," said Bhandari. "We also defined how the protein creates lung injury and then we showed its clinical relevance by documenting its presence in human patients with acute lung injury."

In addition to acute lung injury and pulmonary edema, Bhandari said, an increase in Ang2 and cell death can be seen in other disorders such as heart attacks, stroke, eye disease in diabetics and brain tumors.

Karen N. Peart | EurekAlert!
Further information:

Further reports about: Ang2 Protein edema

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>