Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to acute lung injury lies in Ang2 protein

13.11.2006
Acute lung injury caused by cell death, high and potentially toxic concentrations of oxygen (hyperoxia), and the resulting excess fluid in the lungs (pulmonary edema), may be controlled by modulating levels of the angiopoietin2 (Ang2) protein, researchers at Yale School of Medicine report in the November 5 online issue of Nature Medicine.

The study, which was completed in the laboratory of senior author Jack Elias, M.D., the Waldemar Von Zedtwitz Professor and chair of internal medicine at Yale, looked at the response to hyperoxic acute lung injury (HALI), first in mice and then in human adults and babies. The team found that mice in which the Ang2 gene was genetically eliminated or silenced lived longer and had evidence of decreased lung injury compared to mice in which the gene and protein were intact.

Levels of the Ang2 protein were then measured in the blood and lung fluid of adult patients and babies with acute lung damage and pulmonary edema. The team found that levels of Ang2, which is known to increase leaks in blood vessels and causes the death of endothelial cells that line the blood vessels, were higher in adult patients with acute lung injury and in babies born with respiratory distress syndrome who either went on to develop bronchopulmonary dysplasia or died.

"Mice without Ang2 seemed to be protected against hyperoxia," said first author Vineet Bhandari, M.D., assistant professor of pediatrics at Yale School of Medicine. "This protein seems to be a mediator of cell death in the settings of high oxygen concentrations in the lung causing acute lung injury and pulmonary edema."

... more about:
»Ang2 »Protein »edema

Bhandari said the study is an example of true bench-to-bedside translational research. "All the work was initially done on mice in which we found that the Ang2 protein was involved in HALI," said Bhandari. "We also defined how the protein creates lung injury and then we showed its clinical relevance by documenting its presence in human patients with acute lung injury."

In addition to acute lung injury and pulmonary edema, Bhandari said, an increase in Ang2 and cell death can be seen in other disorders such as heart attacks, stroke, eye disease in diabetics and brain tumors.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Ang2 Protein edema

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>