Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA map provides first comprehensive understanding of alternative splicing

13.11.2006
It’s biology's version of the director’s cut. In much the same way that numerous films could be stitched together from a single reel of raw footage, a molecular process called alternative splicing enables a single gene to produce multiple proteins.

Now a new RNA map, created by a team of researchers at Rockefeller University and the Howard Hughes Medical Institute and announced in the journal Nature, shows for the first time how the specific location of short snippets of RNA affects the way that alternative splicing is controlled in the brain.

Though scientists have begun to appreciate how alternative splicing adds a layer of complexity to brain processes that enable us to think and learn, exactly how alternative splicing is regulated during these processes — and in some cases is uncontrolled (or dysregulated) to cause disease — has remained elusive. The map provides the first comprehensive understanding of how alternative splicing works throughout the genome. The results have implications for a better understanding of such brain functions as learning and memory, neurological diseases and cancer biology.

“This finding is a significant advance in our understanding of splicing, and it suggests that it will be possible to understand how different splicing factors weave together to regulate complex patterns of genes, which in turn is relevant to generating complexity of function,” says senior author Robert Darnell, professor and head of the Laboratory of Molecular Neuro-oncology at Rockefeller and investigator at HHMI.

... more about:
»Exon »Nova »RNA »alternatively »mRNA »spliced »splicing

RNA splicing is the process by which the initial RNA copy of a gene, known as pre-mRNA, is pieced together to produce a mature mRNA that codes for cellular proteins. In alternative splicing, different pieces of this pre-mRNA, called exons, are stitched together to produce different mRNAs, and thus different proteins. The exon can be spliced in or out in a binary, computer-like fashion. By regulating alternative splicing, cells can produce a wide variety of proteins from a finite number of genes. This capacity is believed to be critical to the complex workings of human cells such as those found in the neurons of the brain.

The researchers focused on a brain protein that binds to RNA called Nova. Darnell and his colleagues first identified Nova in 1993 as the target protein in a neurodegenerative disease termed POMA (paraneoplastic opsoclonus-myoclonus ataxia) that is also associated with several types of cancers. Since then the laboratory has focused on identifying RNA sequences — and in particular, identifying alternatively spliced pre-mRNAs — that Nova binds to. In the last three years, in work published in Science and Nature Genetics, the Darnell lab identified over 50 Nova-regulated alternatively spliced exons, using new techniques developed at Rockefeller specifically to find Nova RNA targets, and validating their results in knockout mice that were missing Nova.

In the new study, Darnell, with co-first authors Jernej Ule and Giovanni Stefani, took these 50 RNA transcripts and searched them for clusters of sequences they had previously identified as Nova binding sites through biochemical and, in collaboration with former Rockefeller University structural biologist Stephen Burley, x-ray crystallographic studies. Unexpectedly, this search revealed four discrete peaks where the binding clusters locate. Furthermore, the location of the peaks correlated with Nova’s action on regulating whether the alternative exon is spliced in or out.

The researchers tested whether this RNA map was valid by asking whether it could predict how Nova would act on RNA transcripts that had yet to be discovered. They took a bioinformatics approach, using a database of all alternatively spliced RNAs compiled by co-authors Terry Gaasterland and Bahar Taneri, to search for new genes that had clusters of Nova binding sites. Of the 50 or so transcripts with such clusters, 30 turned out to be alternatively spliced in a Nova-dependent way. Of those, all 30 fit the rules of the RNA map.

“In other words, every transcript that we could predict as a Nova-regulated alternatively spliced RNA fit the prediction of this map,” says Darnell. “Half of them were inhibited by Nova and half were enhanced in their exon use by Nova, and every one very cleanly fit the pattern.”

The researchers also simulated alternative splicing in the test tube, mixing purified RNA and a splicing extract. When purified Nova was added to the extracts, it bound to the mRNA clusters, altering the outcome of how the splicing machinery was able to assemble in a manner that again conformed to the predictions of the RNA map. In one case, Nova blocked specific components of the splicing machinery; in another it enhanced the ability of this machinery to assemble the right way and use an alternatively spliced site that is otherwise poorly utilized.

By offering a global understanding of how alternative splicing works across the genome, the map has implications for the treatment of a growing list of human neurologic diseases in which RNA regulation, and particularly RNA splicing, has been implicated as the primary cause, including certain types of cancer and a number of brain and muscle disorders.

“Given that the complexity of the brain is orders and orders of magnitude more complex than the number of genes we have, one of the intriguing things about alternative splicing is that a relatively small number of regulatory splicing factors acting in concert on a single transcript can potentially generate a large number of different protein variants,” says Darnell.

“There is a converging set of observations indicating that as neurologic diseases are better understood, alternative splicing is going to play an important role in generation of disease and therefore an important role in normal generation of cognitive function,” he adds. “Our new work lays out an approach to developing a global understanding of how alternative splicing is regulated by one disease-associated protein, Nova, offering a route by which scientists may now be able to approach a number of diseases with a fresh start.”

Finally, Darnell’s work has shown that Nova is expressed in certain types of cancer cells. Cancer cells operate by dysregulating gene expression, and Darnell believes that further studies are needed to determine whether Nova is a cause of dysregulated gene expression at the level of alternative splicing in a cancer cell.

“The right splicing factor in the wrong environment could wreak havoc and change the quality of proteins in a tumor cell,” he says.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: Exon Nova RNA alternatively mRNA spliced splicing

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>