Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify cells that make relapse inevitable in acute lymphoblastic leukemia

13.11.2006
In "Dr Jekyll and Mr Hyde" Robert Louis Stevenson wrote about the good and evil sides of the same person; now scientists in Australia have discovered that in acute lymphoblastic leukaemia (ALL) there are Dr Jekyll and Mr Hyde cells – "good" and "evil" clones of the same type of ALL cell.

The "evil" cells are clones that have a pre-existing, rather than acquired, resistance to drugs used for treating ALL, and their presence in a patient means that person will inevitably relapse after chemotherapy, however well they respond initially.

The discovery means that now researchers may be able to design therapies that will specifically target these resistant subclones so that, in the future, patients who have been identified as having them can be treated immediately with the alternative therapies.

ALL is the most common cancer in children and, although nearly all patients will respond initially to chemotherapy, one in four will relapse. Seoyeon Choi told the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Thursday 9 November): "We have previously shown that these relapses were due to small numbers of surviving and highly drug refractory cells. However, until now, it has been unclear whether these relapses resulted from the acquisition of therapy-induced drug resistance or were caused by a subpopulation of cells that were already intrinsically drug resistant."

... more about:
»ALL »Choi »Clone »inevitable »leukaemia »subclone

Ms Choi, a final year PhD student at the Children's Cancer Institute Australia in Sydney and medical student at the University of Sydney, Australia, analysed samples taken from 25 ALL patients at the time of their diagnosis and at their relapse to discover the molecular "fingerprint" of every ALL cell.

"White blood cells, or lymphocytes, are unique in that every one has its own molecular signature. Therefore, we can 'molecular fingerprint' each lymphocyte in order to know what the leukaemia 'looks' like. We found 'fingerprints', or clonal markers, that revealed the emergence or evolution of new clonal populations at the time of relapse in 13 patients. In eight of the samples, highly sensitive clone-specific PCR [polymerase chain reaction] revealed that these 'relapse' clones had been present in small numbers at the time of diagnosis, indicating that they were involved in the mechanism of relapse.

"My research indicates that these are not different leukaemias, but a smaller population of related cells that are naturally more aggressive than the major clone. The problem is that they are present at such low levels, hidden behind the obvious leukaemia; the patient would appear to be responding well to treatment with the major leukaemia clones dying, but, in fact, the small number of subclones can survive therapy and cause a relapse."

The researchers found that the presence of the subclone at diagnosis correlated significantly with the length of the first clinical remission, and the more of the subclone that was present, the quicker the patient relapsed.

Ms Choi said: "I believe it is important to know that these cells are actually more resistant and aggressive from the very beginning, like a evil twin, if you like. While the 'good' twin, or the major clone, appears to be responding well – and lulling the clinicians into a false sense of security – the 'evil' twin, or subclone that is identified too late because of their small numbers, can cause relapse, by which time they are present in very high numbers. Knowing this, we can identify such patients early on in their treatment and focus on new therapies that target the right cell/clonal population so that we may be able to improve the outcome for this special group of patients who relapse early.

"Patients who relapse early usually have a particularly poor outcome, and if we could prevent the relapse that is inevitable under the current treatment regime, then we might be able to make a big difference to these children's survival."

The researchers believe that, in those patients where they were unable to detect subclones, the cells may have existed, but in numbers too low to be detected by current methods, and they are working to improve the PCR technique in order to increase its sensitivity so that it can be used to identify even smaller numbers of subclones.

At present there are no therapies that can be used specifically to treat children who are identified as having the relapse subclone. However, Ms Choi said that now her research had identified the cells that made relapse inevitable, it would be possible for researchers to start work on therapies that could target these cells. "If we could treat these differently, by targeting them early in therapy, or introducing alternative therapies, we may improve the overall outcome of every patient with leukaemia.

"While I do not know when this research will translate into clinical changes, I do believe that it will happen in my lifetime when I graduate from medical school and start to practice as a physician."

Emma Mason | EurekAlert!
Further information:
http://www.eortc.org

Further reports about: ALL Choi Clone inevitable leukaemia subclone

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>