Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea Urchin Genome Is a Biology Boon and a Computational Feat

13.11.2006
Now that the entire DNA map of the sea urchin is complete, it’s clear that these spiny sea creatures are even closer genetic cousins to humans than suspected. Brown University professors Gary Wessel and Sorin Istrail helped reveal the secrets of the urchin – from its powerful immune system to its formidable gene regulatory network – by identifying individual genes and creating the first high-resolution map of genes activated in its embryo. The work appears on the cover of Science.

Scientists have long known that humans and sea urchins are closely related. In fact, these animals are the only invertebrates on the human branch of the evolutionary tree of life. Now that the sea urchin genome is sequenced and assembled, that genetic connection is even clearer.

After identifying 23,300 genes made from 814 million letters of DNA code taken from Strongylocentrotus purpuratus, the California purple urchin, an international science team has found that humans share 7,077 genes with urchins. This makes the spiny, spineless creature a closer genetic cousin to man than the fruit fly or worm, more widely studied model organisms. Results from the sequencing project are published in a special six-article section of Science.

Other surprises from the project: Urchins have the most sophisticated innate immune system of any animal studied to date. They carry genes associated with many human diseases, such as muscular dystrophy and Huntington’s disease. The urchin also has genes associated with taste and smell, hearing and balance.

... more about:
»DNA »Embryo »Genom »Urchin »transcriptome

And these eyeless animals can see – or at least sense light. How? Through their feet. Scientists found genes associated with vision, genes that are activated in the urchin’s tube feet, puny projections on the animal’s shells that help it move and feed. “Nobody would’ve predicted that sea urchins have such a robust gene set for visual perception,” said Gary Wessel, a Brown University biology professor and member of the Sea Urchin Genome Sequencing Consortium. “I’ve been looking at these organisms for 31 years – and now I know they were looking back at me.”

As part of the sequencing project, Wessel led the group of scientists who studied hundreds of thousands of letters of genetic code and identified the genes responsible for sea urchin reproduction. A professor in the Department of Molecular Biology, Cell Biology and Biochemistry at Brown, Wessel runs one of the nation’s top sea urchin labs, using the animals to study fertilization and early development in humans.

With the ability to lay millions of eggs in a lifetime and with a clear embryo – one that allows scientists to identify and observe each individual cell at work – urchins are ideal organisms for understanding the burst of biological activity that occurs after sperm and egg merge. In just one month, a human embryo has produced thousands of cells that form all the major organs as well as the general body plan of head, torso and limbs. The urchin’s usefulness as a model system for developmental biology was a key reason for sequencing its genome. “We’ve already learned an enormous amount from the sea urchin, from something as basic as how identical twins form to in vitro fertilization procedures,” Wessel said. “With a complete map of the urchin’s DNA, we can now learn more quickly and easily how each process works during development.”

Sorin Istrail, a Brown professor of computer science and director of the University’s Center for Computational Molecular Biology, also served as a member of the sea urchin sequencing team. A former research director at Celera Genomics, the private company that sequenced the human genome, Istrail was one of eight scientists in the urchin project who pulled off a computational feat. The group identified every gene activated in the urchin embryo, publishing their results in a companion paper in Science.

This map, called a transcriptome, represents every experimentally authenticated messenger RNA molecule, or transcript, present in embryonic cells. This information tells scientists which genes are activated, or expressed, during the first two days of development. The group determined that at least 11,000 to 12,000 genes – or about half of all of the animal’s genes – are expressed in this critical early stage. “Understanding what genes are active in a cell at any given time is critical to biologists,” Istrail said. “This information can tell them what genes do and represents the first step in understanding how they work with other genes during development or aging, in health and during disease.”

While transcriptome maps have been created for other species, none has been completed so quickly. That’s because Istrail and the other scientists on the transcriptome team used a whole-genome tiling array custom-built by NASA. The array allowed them to insert 500,000 bits of DNA into 500,000 cells at a time to see which bits get copied into messenger RNA. The high-resolution transcriptome map helped scientists more rapidly identify and verify genes for the larger sequencing project.

“The sea urchin holds the key to the cis-regulatory code, the blueprint for gene regulatory systems and networks and the functional maps of the control circuitry of the cell,” Istrail said. “Now that we have the genome and transcriptome map, we can start to crack this code, which will reveal key insights into human genetics and evolution.”

The National Science Foundation and the National Institutes of Health supported Wessel’s work on the urchin genome. Brown University supported Istrail’s work on the project.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: DNA Embryo Genom Urchin transcriptome

More articles from Life Sciences:

nachricht Proteins with different evolutionary histories now do the same job
21.06.2018 | Eberhard Karls Universität Tübingen

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>