Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Nanorust' cleans arsenic from drinking water

10.11.2006
Tiny tech promises 'no-energy' solution for global problem

The discovery of unexpected magnetic interactions between ultrasmall specks of rust is leading scientists at Rice University's Center for Biological and Environmental Nanotechnology (CBEN) to develop a revolutionary, low-cost technology for cleaning arsenic from drinking water. The technology holds promise for millions of people in India, Bangladesh and other developing countries where thousands of cases of arsenic poisoning each year are linked to poisoned wells.

The new technique is described in the Nov. 10 issue of Science magazine.

"Arsenic contamination in drinking water is a global problem, and while there are ways to remove arsenic, they require extensive hardware and high-pressure pumps that run on electricity," said center director and lead author Vicki Colvin. "Our approach is simple and requires no electricity. While the nanoparticles used in the publication are expensive, we are working on new approaches to their production that use rust and olive oil, and require no more facilities than a kitchen with a gas cooktop."

CBEN's technology is based on a newly discovered magnetic interaction that takes place between particles of rust that are smaller than viruses.

"Magnetic particles this small were thought to only interact with a strong magnetic field," Colvin said. "Because we had just figured out how to make these particles in different sizes, we decided to study just how big of magnetic field we needed to pull the particles out of suspension. We were surprised to find that we didn't need large electromagnets to move our nanoparticles, and that in some cases hand-held magnets could do the trick."

The experiments involved suspending pure samples of uniform-sized iron oxide particles in water. A magnetic field was used to pull the particles to out of solution, leaving only the purified water. Colvin's team measured the tiny particles after they were removed from the water and ruled out the most obvious explanation: the particles were not clumping together after being tractored by the magnetic field.

Colvin, professor of chemistry, said the experimental evidence instead points to a magnetic interaction between the nanoparticles themselves.

Co-author Doug Natelson explains, "As particle size is reduced the force on the particles does drop rapidly, and the old models were correct in predicting that very big magnetic fields would be needed to move these particles.

"In this case, it turns out that the nanoparticles actually exert forces on each other," said Natelson, associate professor of physics and astronomy and in electrical and computer engineering. "So, once the hand-held magnets start gently pulling on a few nanoparticles and get things going, the nanoparticles effectively work together to pull themselves out of the water."

Colvin said, "It's yet another example of the unique sorts of interactions we see at the nanoscale."

Because iron is well known for its ability to bind arsenic, Colvin's group repeated the experiments in arsenic-contaminated water and found that the particles would reduce the amount of arsenic in contaminated water to levels well below the EPA's threshold for U.S. drinking water.

Colvin's group has been collaborating with researchers from Rice Professor Mason Tomson's group in civil and environmental engineering to further develop the technology for arsenic remediation. Colvin said Tomson's preliminary calculations indicate the method could be practical for settings where traditional water treatment technologies are not possible. Because the starting materials for generating the nanorust are inexpensive, she said the cost of the materials could be quite low if manufacturing methods are scaled up. In addition, Colvin's graduate student, Cafer Yuvez, has been working for several months to refine a method that villagers in the developing world could use to prepare the iron oxide nanoparticles. The primary raw materials are rust and fatty acids, which can be obtained from olive oil or coconut oil, Colvin said.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Colvin Iron Magnetic arsenic magnetic field nanoparticles

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>