Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Young Rats, Researchers Find a Reaction to Spinal Cord Injury That Speeds Recovery

10.11.2006
Finding surprises researchers, who discovered that young rats mend more quickly because cells near the injury site respond differently than in adults

Neuroscientists had long believed that the only way to repair a spinal cord injury was to grow new neural connections, but researchers at Georgetown University Medical Center have found that, especially in young rats, powerful cells near the injury site also work overtime to restrict nerve damage and restore movement and sensation.

The same process does not work as efficiently in adult rats and thus recovery time is much longer, the researchers also discovered. But they say that now that they know such a mechanism exists, it may be possible one day to “switch” these cells on therapeutically ? and possibly help humans function better following serious spinal cord injuries.

“No one knew cells in the spinal cord acted to protect nerves in this way, so it gives us some hope that in the future we could stimulate this process in the clinic to enhance recovery and ensure the best outcome possible for patients,” said the senior author, Jean R. Wrathall, Ph.D., professor in the Department of Neuroscience.

... more about:
»Myelin »Nerve »Recovery »Wrathall »axons »sheath »spinal

“This is an animal study, however, and there is much work to do to understand more about this process and how it might be altered,” Wrathall said. The study, whose first author is graduate student Philberta Y. Leung, is published in the November 2006 issue of the journal Experimental Neurology.

At the least, Wrathall said, the study reveals surprising new information about nerve cell recovery that neuroscientists can now explore.

In vertebrates, the nervous system uses a two-way transmission system to communicate the electrical impulses that lead to muscle movement and the perception of sensation. In humans, hundreds of thousands of nerve fibers (axons), which can be several feet in length, run through the spinal cord like a two-lane road. Half of these axons connect the brain to distant muscles, and the other half links the body to the brain.

Axons cannot regenerate when they are completely severed, but researchers believe that in a partial injury, surviving nearby axons that serve the same general body area and function can “sprout” new connections to those injured nerve cells that have lost some of their axons. In studying spinal cord injury in rats ? the usual model for this kind of investigation ? researchers had thought that younger rats (“pups”) regain function faster because this sprouting occurs more quickly and proficiently than in older rats. “Just as young trees grow more quickly if you prune them than do older trees, we thought than in young animals, surviving axons would sprout new, and longer, axonal connections more readily,” Wrathall said.

But the findings surprised them. “We didn’t see that sprouting was faster or better in younger than in adult rats after a partial spinal cord injury,” she said. Instead, they saw distinctions in what occurred in cells within the spinal cord at the site of injury. Leung and Wrathall specifically discovered that in the pups, specialized neural stem cells grew vigorously after injury and within one week, many oligodendrocytes, cells whose function is to provide a protective myelin sheath to axons, were produced..

The researchers believe that these activated cells wrap nearby surviving axons with extra myelin sheathing in order to protect them and support their function after injury.

“The ability of axons to transmit their signals is greatly dependent on the insulation provided by their myelin sheaths, and we know that axons near the site of injury eventually can die due to loss of this myelin,” Wrathall said. “So we believe these stem cells work to protect healthy axons against toxic factors in the microevironment.”

Adult rats do not activate these specialized cells to the same extent as the pups do after injury, for reasons that are not understood, she added.

“We hadn’t expected these results, but they are exciting for the field of spinal cord injury and recovery,” Wrathall said. “Now that we know that the difference in the local cell response to injury means a quicker recovery, we might be able to eventually exploit that innate healing ability in humans.”

She added that these new findings might also be relevant to multiple sclerosis, a disease caused by loss of an axon’s protective myelin sheath.

The study was funded by grants from the National Institutes of Health

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO).

Laura Cavender | EurekAlert!
Further information:
http://www.georgetown.edu

Further reports about: Myelin Nerve Recovery Wrathall axons sheath spinal

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>