Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Young Rats, Researchers Find a Reaction to Spinal Cord Injury That Speeds Recovery

10.11.2006
Finding surprises researchers, who discovered that young rats mend more quickly because cells near the injury site respond differently than in adults

Neuroscientists had long believed that the only way to repair a spinal cord injury was to grow new neural connections, but researchers at Georgetown University Medical Center have found that, especially in young rats, powerful cells near the injury site also work overtime to restrict nerve damage and restore movement and sensation.

The same process does not work as efficiently in adult rats and thus recovery time is much longer, the researchers also discovered. But they say that now that they know such a mechanism exists, it may be possible one day to “switch” these cells on therapeutically ? and possibly help humans function better following serious spinal cord injuries.

“No one knew cells in the spinal cord acted to protect nerves in this way, so it gives us some hope that in the future we could stimulate this process in the clinic to enhance recovery and ensure the best outcome possible for patients,” said the senior author, Jean R. Wrathall, Ph.D., professor in the Department of Neuroscience.

... more about:
»Myelin »Nerve »Recovery »Wrathall »axons »sheath »spinal

“This is an animal study, however, and there is much work to do to understand more about this process and how it might be altered,” Wrathall said. The study, whose first author is graduate student Philberta Y. Leung, is published in the November 2006 issue of the journal Experimental Neurology.

At the least, Wrathall said, the study reveals surprising new information about nerve cell recovery that neuroscientists can now explore.

In vertebrates, the nervous system uses a two-way transmission system to communicate the electrical impulses that lead to muscle movement and the perception of sensation. In humans, hundreds of thousands of nerve fibers (axons), which can be several feet in length, run through the spinal cord like a two-lane road. Half of these axons connect the brain to distant muscles, and the other half links the body to the brain.

Axons cannot regenerate when they are completely severed, but researchers believe that in a partial injury, surviving nearby axons that serve the same general body area and function can “sprout” new connections to those injured nerve cells that have lost some of their axons. In studying spinal cord injury in rats ? the usual model for this kind of investigation ? researchers had thought that younger rats (“pups”) regain function faster because this sprouting occurs more quickly and proficiently than in older rats. “Just as young trees grow more quickly if you prune them than do older trees, we thought than in young animals, surviving axons would sprout new, and longer, axonal connections more readily,” Wrathall said.

But the findings surprised them. “We didn’t see that sprouting was faster or better in younger than in adult rats after a partial spinal cord injury,” she said. Instead, they saw distinctions in what occurred in cells within the spinal cord at the site of injury. Leung and Wrathall specifically discovered that in the pups, specialized neural stem cells grew vigorously after injury and within one week, many oligodendrocytes, cells whose function is to provide a protective myelin sheath to axons, were produced..

The researchers believe that these activated cells wrap nearby surviving axons with extra myelin sheathing in order to protect them and support their function after injury.

“The ability of axons to transmit their signals is greatly dependent on the insulation provided by their myelin sheaths, and we know that axons near the site of injury eventually can die due to loss of this myelin,” Wrathall said. “So we believe these stem cells work to protect healthy axons against toxic factors in the microevironment.”

Adult rats do not activate these specialized cells to the same extent as the pups do after injury, for reasons that are not understood, she added.

“We hadn’t expected these results, but they are exciting for the field of spinal cord injury and recovery,” Wrathall said. “Now that we know that the difference in the local cell response to injury means a quicker recovery, we might be able to eventually exploit that innate healing ability in humans.”

She added that these new findings might also be relevant to multiple sclerosis, a disease caused by loss of an axon’s protective myelin sheath.

The study was funded by grants from the National Institutes of Health

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO).

Laura Cavender | EurekAlert!
Further information:
http://www.georgetown.edu

Further reports about: Myelin Nerve Recovery Wrathall axons sheath spinal

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>