Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Muscle' protein drives prostate cancer

10.11.2006
Researchers at the Johns Hopkins Kimmel Cancer Center have for the first time implicated the muscle protein myosin VI in the development of prostate cancer and its spread.

In a series of lab studies with human prostate cancer cells, the Hopkins scientists were surprised to find overproduction of myosin VI in both prostate tumor cells and precancerous lesions. When the scientists genetically altered the cells to "silence" myosin VI, they discovered the cells were less able to invade in a test tube.

"Our results suggest that myosin VI may be critical in starting and maintaining the malignant properties of the majority of human prostate cancers diagnosed today," says Angelo M. De Marzo, M.D., Ph.D., a study coauthor and associate professor of pathology, urology and oncology.

The Hopkins work, published in the November issue of the American Journal of Pathology, has potential value for better ways to diagnose the disease, treat and track the effects of drugs and surgery. "Targeting myosin VI represents a promising new approach that could lead eventually new approaches to treating the disease," says Jun Luo, Ph.D., senior author of the paper and assistant professor of urology.

... more about:
»Myosin »Samples »prostate »prostate cancer

Myosins are a class of 40 motor proteins that power cell movement and muscle contractions. Normally, as they work, myosins slide in a single direction along the threads of a protein called actin. But myosin VI moves against the grain, and it does not function as a classical "muscle" protein.

Using a DNA microarray to study all of the genes in 59 samples of benign or cancerous prostate tissue from patients at Johns Hopkins, the researchers found the malignant samples showed a 3.7-fold higher expression of myosin VI as compared to normal samples, and a 4.6-fold increase as compared to the samples from patients with enlarged prostate.

Next, the researchers hunted for myosin VI in 240 prostate tissue samples, discovering overproduction early in the development of prostate cancer in such pre-tumor conditions as high-grade prostatic intraepithelial neoplasia (PIN) and proliferative inflammatory atrophy.

Finally, when they altered some cancerous cells by knocking down their myosin VI protein, the cancer cells not only were less able to spread around, but also showed 10 times the amount of a tumor suppressor called thioredoxin-interacting protein (TXNIP).

Prostate cancer, which affects one in nine American men over the course of their lives, is mainly diagnosed by needle biopsy of the prostate gland after a blood test shows an increased level of prostate-specific antigen (PSA). While the PSA test is now widespread and provides many men with early diagnosis and better chance of a cure, says Luo, it may not be sensitive or specific enough to pinpoint the existence of cancer. Using myosin VI or other factors, it may be possible, Luo says, to create a laboratory test to identify high or low levels in urine or blood samples, and this might aid in the detection of prostate cancer. Myosin VI also has been shown to be associated with ovarian cancer.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Myosin Samples prostate prostate cancer

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>