Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Muscle' protein drives prostate cancer

10.11.2006
Researchers at the Johns Hopkins Kimmel Cancer Center have for the first time implicated the muscle protein myosin VI in the development of prostate cancer and its spread.

In a series of lab studies with human prostate cancer cells, the Hopkins scientists were surprised to find overproduction of myosin VI in both prostate tumor cells and precancerous lesions. When the scientists genetically altered the cells to "silence" myosin VI, they discovered the cells were less able to invade in a test tube.

"Our results suggest that myosin VI may be critical in starting and maintaining the malignant properties of the majority of human prostate cancers diagnosed today," says Angelo M. De Marzo, M.D., Ph.D., a study coauthor and associate professor of pathology, urology and oncology.

The Hopkins work, published in the November issue of the American Journal of Pathology, has potential value for better ways to diagnose the disease, treat and track the effects of drugs and surgery. "Targeting myosin VI represents a promising new approach that could lead eventually new approaches to treating the disease," says Jun Luo, Ph.D., senior author of the paper and assistant professor of urology.

... more about:
»Myosin »Samples »prostate »prostate cancer

Myosins are a class of 40 motor proteins that power cell movement and muscle contractions. Normally, as they work, myosins slide in a single direction along the threads of a protein called actin. But myosin VI moves against the grain, and it does not function as a classical "muscle" protein.

Using a DNA microarray to study all of the genes in 59 samples of benign or cancerous prostate tissue from patients at Johns Hopkins, the researchers found the malignant samples showed a 3.7-fold higher expression of myosin VI as compared to normal samples, and a 4.6-fold increase as compared to the samples from patients with enlarged prostate.

Next, the researchers hunted for myosin VI in 240 prostate tissue samples, discovering overproduction early in the development of prostate cancer in such pre-tumor conditions as high-grade prostatic intraepithelial neoplasia (PIN) and proliferative inflammatory atrophy.

Finally, when they altered some cancerous cells by knocking down their myosin VI protein, the cancer cells not only were less able to spread around, but also showed 10 times the amount of a tumor suppressor called thioredoxin-interacting protein (TXNIP).

Prostate cancer, which affects one in nine American men over the course of their lives, is mainly diagnosed by needle biopsy of the prostate gland after a blood test shows an increased level of prostate-specific antigen (PSA). While the PSA test is now widespread and provides many men with early diagnosis and better chance of a cure, says Luo, it may not be sensitive or specific enough to pinpoint the existence of cancer. Using myosin VI or other factors, it may be possible, Luo says, to create a laboratory test to identify high or low levels in urine or blood samples, and this might aid in the detection of prostate cancer. Myosin VI also has been shown to be associated with ovarian cancer.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Myosin Samples prostate prostate cancer

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>