Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tarantula venom and chili peppers target same pain sensor

10.11.2006
Venom from a West Indian tarantula has been shown to cause pain by exciting the same nerve cells in mice that sense high temperatures and the hot, spicy ingredient in chili peppers, UCSF scientists have discovered.

The findings demonstrate that some plants and animals have evolved the same molecular strategy to deter predators -- triggering pain by activating a specific receptor on sensory nerves. The research provides new tools to understand how these pain- and heat-sensing neurons work, and to help develop drugs that ease persistent pain, the scientists report.

Their finding, based on studies of mice cells in culture and live mice, is published in the November 9 issue of the journal Nature. The senior author is David Julius, professor and chair of physiology at UCSF.

The tarantula venom targets the heat sensor on nerve cells known as the capsaicin receptor, first cloned in 1997 in the Julius laboratory. In the last 10 years, Julius and his colleagues have demonstrated that this and related receptors trigger nerves to fire pain signals when exposed to Death Valley-like heat or the fiery properties of peppery food, mustard oil and other compounds. Human pain-sensing neurons also have these receptors on their surface, and some pain treatments have been developed that target them.

... more about:
»Capsaicin »Ion »pain »peptides »receptor »venom

The capsaicin receptor acts as a channel on the nerve surface. When certain compounds bind to it, the receptor channel opens, allowing a stream of charged sodium and calcium molecules to rush into the nerve cell. This generates an electrical signal that travels to the brain to produce pain.

The researchers examined venoms from 22 spider and scorpion species whose bites are known to cause pain. Venom from the tarantula Psalmopoeus cambridgei activated the capsaicin receptor, also called TRPV1, and the researchers identified three protein subunits or peptides in the venom that targeted the receptor to cause pain. They also showed that venom from a second spider activated TRPV1, but they did not pinpoint which peptides were responsible.

The fact that a second spider venom triggered a capsaicin receptor suggests that a variety of spider species may have evolved the ability to use such toxins to target heat- and pain-sensing neuron receptors, the scientists conclude.

"It is fascinating that plants and animals have evolved the same anti-predatory mechanism to generate noxious sensations," Julius said. "These toxins are incredibly useful for understanding how ion channels of the nervous system work. They give us clues as to how specific activators or blockers on these channels can be designed to treat persistent pain – from arthritis, bladder infections, or other diseases."

The researchers determined the venom peptides' effect in neuron cell cultures, measuring the tell-tale rush of calcium ions when the venom peptides contacted the TRPV1 capsaicin receptor. They also showed that synthetic versions of the venom peptides activated the receptor. In studies with mice, they found that normal animals flinched when their paws were exposed to the peptides, which they call vanillotoxins. Mice genetically engineered to lack capsaicin receptors did not respond.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Capsaicin Ion pain peptides receptor venom

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>