Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals that odor discrimination is linked to the timing at which neurons fire

09.11.2006
Timing is everything. For a mouse trying to discriminate between the scent of a tasty treat and the scent of the neighborhood cat, timing could mean life or death. In a striking discovery, Carnegie Mellon University scientists have linked the timing of inhibitory neuron activity to the generation of odor-specific patterns in the brain's olfactory bulb, the area of the brain responsible for distinguishing odors.

Their work, appearing in the Nov. 8 issue of the Journal of Neuroscience, describes for the first time a cellular mechanism linking a specific stimulus to the timing at which inhibitory neurons fire. This breakthrough lays a cellular foundation for the "temporal coding hypothesis," which proposes that odor identity is encoded by the timing of neuronal firing and not the rate at which neurons fire.

Past research has shown that specific odors trigger unique patterns of electrical activity in the brain. Generating these patterns requires reliably timed inhibition, but relatively little was known about the timing of the activity of inhibitory neurons -- until now.

"There is a clear link between which odor is being presented and the time at which inhibitory neurons fire. This timing controls which excitatory neurons are active and at which time. This modulation contributes to the generation of reliable temporal patterns of neuronal activity," said Nathan Urban, an assistant professor of biological sciences at the Mellon College of Science at Carnegie Mellon.

... more about:
»Neuron »granule »inhibitory »odor »specific

Populations of mitral cells, a type of excitatory neuron in the olfactory bulb, receive input from neurons in the nose that respond to a single odorant. After receiving this input, the mitral cells convey messages about odor identity to other parts of the brain. But they don't simply relay information. Their activity, and therefore which message they send, is modulated by the inhibitory activity of granule cells. In a first, Urban has shown that the timing of granule cell firing encodes odor information.

Urban's work is especially provocative given that the traditional view holds that the rate of neuronal firing is what really matters, not the time that it takes for a stimulated neuron to fire. Recognition of a stimulus like an odor relies on the orchestrated firing of neurons, both ones that excite other neurons to relay a message as well as ones that inhibit or alter how a message is relayed.

"Our results indicate that the latency period before a single granule cell fires is associated with a specific odor, thus linking the timing of inhibitory modulation of mitral cell activity to odor identity. In other words, the timing of granule cell firing conveys different messages. In this case, the messages relay which odor is present," explained Urban.

Urban monitored the subtle-yet-coordinated activity of populations of granule cells in living brain slices using calcium imaging, an optical imaging technique that has never been applied to studies of the olfactory system. Urban loaded the neurons with a fluorescent dye that emits a yellow glow. This glow decreases when the dye binds to calcium. Because the flow of calcium ions into and out of cells corresponds to their firing, Urban was able to actually watch which neurons were firing and when.

Urban stimulated mitral cells, which in turn stimulated granule cells. He found that granule cells respond by firing over a range of times, from a fraction of a millisecond to hundreds of milliseconds. But, according to Urban, the most striking observation was that specific granule cells reliably fired with the same latency when they receive input from certain populations of mitral cells. Input from one group of mitral cells (hence, one set of odor receptors) caused certain granule cells to fire with a 500-millisecond delay, for example. Input from another set of mitral cells (a different set of odor receptors) caused the same granule cells to fire with a 50-millisecond delay. Thus, he found that the timing of granule cell firing is directly related to the input the mitral cells receive -- the original odorant.

"This is the first time we have seen reliable timing of firing. It turns out that cells are better at clocking their firing than previously thought," Urban said.

"This finding is a springboard to addressing other important questions," Urban added. "For example, what are the molecular mechanisms by which granule cells time their firing? We are now exploring this question, as well as how we can observe this odor-specific timing in living animals."

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

Further reports about: Neuron granule inhibitory odor specific

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>