Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better way of lubricating human joints and implants

09.11.2006
Researchers at the University of Oxford have discovered that certain lubricants reduce friction much more effectively in water or water-based solutions than in machine oil or air, which may be how the process works in biological systems as well.

‘Boundary lubrication is common in machines but is also thought to act between joints and other living organs in the form of phospholipid films,’ said Professor Jacob Klein. ‘This new mechanism could lead to better lubricated artificial implants, as well as to more effective treatments for joint problems like osteoarthritis.’

Professor Klein and his colleagues at the Physical and Theoretical Chemistry Laboratory at Oxford reported their discoveries in the 9 November issue of the journal Nature.

For more than fifty years, films or layers which are one molecule thick have been used in air or oil to lubricate surfaces which rub together, reducing friction and wear. These layers have usually belonged to the class of amphiphilic surfactants, whose head is water-loving, while their tail is water-repelling.

... more about:
»Molecule »Surface »Surfactant

‘Each of the rubbing surfaces is coated by a “boundary” layer of surfactant molecules, with charged heads that stick to the surface while their hydrocarbon tails dangle out,’ explained Professor Klein. ‘In classical boundary lubrication in air or oil, the rubbing occurs between these protective tails and greatly reduces friction and wear.’

The Oxford researchers studied the friction between mica surfaces in the different environments, with and without overlaying surfactants. They have shown that the friction stress between two sliding surface coated by surfactant monolayers can decrease much more in water than in air or oil, falling to one percent or less of its value for the latter environments.

‘We believe this happens because the charged head groups then become hydrated, that is, coated with water molecules,’ said Professor Klein. ‘This enables them to slide much more easily past the substrate than the hydrocarbon tails can slide past each other. As a result, the slip occurs at the substrate, rather than between the surfactant tails as in the classical mechanism.’

The researchers proved that the hydration of the anchors must be largely responsible for the reduction in friction by testing surfactants which were homologous to the original but could not be fully hydrated at the surface because of their structures, which resulted in greater friction. They also eliminated the possibility of this occurring due to the flipping of the surfactants’ anchors when they came into contact with water by performing the same experiments on surfaces which were brought into adhesive contact before being immersed, so that the anchors could not flip.

Barbara Hott | alfa
Further information:
http://www.ox.ac.uk

Further reports about: Molecule Surface Surfactant

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>