Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A better way of lubricating human joints and implants

Researchers at the University of Oxford have discovered that certain lubricants reduce friction much more effectively in water or water-based solutions than in machine oil or air, which may be how the process works in biological systems as well.

‘Boundary lubrication is common in machines but is also thought to act between joints and other living organs in the form of phospholipid films,’ said Professor Jacob Klein. ‘This new mechanism could lead to better lubricated artificial implants, as well as to more effective treatments for joint problems like osteoarthritis.’

Professor Klein and his colleagues at the Physical and Theoretical Chemistry Laboratory at Oxford reported their discoveries in the 9 November issue of the journal Nature.

For more than fifty years, films or layers which are one molecule thick have been used in air or oil to lubricate surfaces which rub together, reducing friction and wear. These layers have usually belonged to the class of amphiphilic surfactants, whose head is water-loving, while their tail is water-repelling.

... more about:
»Molecule »Surface »Surfactant

‘Each of the rubbing surfaces is coated by a “boundary” layer of surfactant molecules, with charged heads that stick to the surface while their hydrocarbon tails dangle out,’ explained Professor Klein. ‘In classical boundary lubrication in air or oil, the rubbing occurs between these protective tails and greatly reduces friction and wear.’

The Oxford researchers studied the friction between mica surfaces in the different environments, with and without overlaying surfactants. They have shown that the friction stress between two sliding surface coated by surfactant monolayers can decrease much more in water than in air or oil, falling to one percent or less of its value for the latter environments.

‘We believe this happens because the charged head groups then become hydrated, that is, coated with water molecules,’ said Professor Klein. ‘This enables them to slide much more easily past the substrate than the hydrocarbon tails can slide past each other. As a result, the slip occurs at the substrate, rather than between the surfactant tails as in the classical mechanism.’

The researchers proved that the hydration of the anchors must be largely responsible for the reduction in friction by testing surfactants which were homologous to the original but could not be fully hydrated at the surface because of their structures, which resulted in greater friction. They also eliminated the possibility of this occurring due to the flipping of the surfactants’ anchors when they came into contact with water by performing the same experiments on surfaces which were brought into adhesive contact before being immersed, so that the anchors could not flip.

Barbara Hott | alfa
Further information:

Further reports about: Molecule Surface Surfactant

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>