Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego Scientists Establish Connection Between Life Today and Ancient Changes in Ocean Chemistry

08.11.2006
Researchers in computational biology and marine science have combined their diverse expertise and found that trace-metal usage by present-day organisms probably derives from major changes in ocean chemistry occurring over geological time scales.

Using protein structures for the first time in such a study, the research establishes one of the influences that geochemistry has had upon life.

The study, published in this week’s edition of the Proceedings of the National Academy of Sciences, sought to verify the theory that the rise in atmospheric oxygen some 2.3 billion years ago, and attendant shifts in ocean chemistry, led to changes in types of metals used with protein structures. Such changes are hypothesized to have led to the diversification and increased complexity of the life we see today.

Scientists Chris Dupont, Song Yang, Brian Palenik and Philip Bourne from the San Diego Supercomputer Center (SDSC), Scripps Institution of Oceanography, and the departments of chemistry and biochemistry and pharmacology at the University of California, San Diego (UCSD) analyzed the metal-binding characteristics of all known protein structures found in all kingdoms of life.

... more about:
»Science »protein structure »trace-metal

“Protein structures are ideal for this study,” Bourne said, “since they are much more conserved than protein sequences, traditionally used in such studies and, furthermore, metal binding can be inferred directly.”

Using data generated by Dupont and Yang, the group established that the three superkingdoms of life – Archaea, Bacteria and Eukarya -- all use metals differently. The differences reflect the availability of such metals in the ocean as the respective superkingdoms evolved.

The authors conclude that, “these conserved trends are proteomic imprints of changes in trace-metal bioavailability in the ancient ocean that highlight a major evolutionary shift in biological trace-metal usage.”

The changes in trace-metal availability are believed to have been brought about by the biologically caused rise in atmospheric oxygen some 2.3 billion years ago, highlighting the co-evolution of biology and geochemistry on a global scale.

“Here, a biological phenomenon, photosynthesis, changed the availability of trace metals in the oceans,” Dupont said, “resulting in a reciprocal change in biological evolution still observable today.”

The group notes that, “such studies linking the study of the earth sciences with that of the life sciences are limited and certainly no one has previously looked at this exciting area from the perspective of protein structure. We hope this will encourage others to undertake such interdisciplinary work.”

Paul K. Mueller | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Science protein structure trace-metal

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>