Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Plants Share Bacterial Toxin

08.11.2006
A toxin that can make bacterial infections turn deadly is also found in higher plants, researchers at UC Davis, the Marine Biology Laboratory at Woods Hole, Mass. and the University of Nebraska have found. Lipid A, the core of endotoxin, is located in the chloroplasts, structures that carry out photosynthesis within plant cells.

The lipid A in plant cells is evidently not toxic. The human intestine contains billions of Gram-negative bacteria, but lipid A does not become a problem unless bacteria invade the bloodstream.

"We've no idea what it's doing, but it must be something important because it's been retained for a billion years of evolution of plant chloroplasts," said Peter Armstrong, professor of molecular and cellular biology at UC Davis and senior author on the paper.

Endotoxin is better known to bacteriologists and physicians as part of the outer coat of Gram-negative bacteria such as E. coli. The lipid A core of bacterial endotoxin activates the immune system and can cause septic shock, a major cause of death from infection. It is distinct from the toxin found in E. coli strain 0157, responsible for the recent outbreak of food poisoning tied to spinach.

... more about:
»Lipid »bacteria »chloroplasts

Bacteria were thought to be the only source of lipid A. However, R.L. Pardy, professor at the University of Nebraska-Lincoln, recently found a similar molecule in Chlorella, a single-celled relative of more advanced plants. Armstrong's lab at UC Davis developed methods to visualize lipid A in cells, using a protein from the immune system of the horseshoe crab, and the researchers began collaborating.

"It was one of those celebratory moments, when I looked in the microscope and saw these gloriously stained algal cells," Armstrong said, describing their first experiment. The group has now found lipid A in chloroplasts of garden pea plants as well as green algae, and Armstrong suspects that it is present in all higher plants with chloroplasts.

That idea is supported by genetics. Sequencing of the Arabidopsis genome -- the first higher plant to have its entire DNA sequence read -- revealed that the common lab plant has all the biochemical machinery to make lipid A, an observation that had gone largely unnoticed until now. Chloroplasts themselves are thought to have evolved from cyanobacteria, independent photosynthetic bacteria that took up residence in ancestral plant cells.

Other authors on the paper, in addition to Armstrong and Pardy, are postgraduate researcher Margaret Armstrong; Steven Theg, professor of plant biology, and graduate student Nikolai Braun at UC Davis; and Norman Wainwright at the Woods Hole Marine Biology Laboratory. The work was funded by the National Science Foundation and is published in the October 2006 issue of the FASEB Journal.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: Lipid bacteria chloroplasts

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>