Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain-chemistry differences found in depressed women

08.11.2006
U-M Depression Center study shows alterations in key brain-chemical system involved in responding to stress and regulating emotions

A new brain study finds major differences between women with serious depression and healthy women in a brain-chemical system that's crucial to stress and emotions.

The study adds further evidence that depression has its roots in specific alterations within the brain -- specifically in the endogenous opioid system that is a central part of the brain's natural pain and stress-reduction system. The findings also show significant variation between individuals with depression – variation that seems to be linked to whether or not the patients respond to an antidepressant medication.

The study, performed by researchers at the University of Michigan Medical School affiliated with the U-M Depression Center, is published in the November issue of the Archives of General Psychiatry. It's based on brain imaging, blood chemistry and other data from 14 women with major depression, and 14 healthy women of about the same age and background. The women with depression were not taking antidepressants when the study began.

... more about:
»Emotional »antidepressant »memories »mu-opioid »pain

"This work gives further evidence of individual differences in brain mechanisms that are altered in major depression," says senior author Jon-Kar Zubieta, M.D., Ph.D., the Jenkins Research Professor of Depression and associate professor of psychiatry and radiology. "We found these differences in the response of the endogenous opioid system. Some women, but not others, with major depression, showed exaggerated responses in this system when undergoing an emotional challenge."

That emotional challenge was the summoning of memories of a very sad event in their lives, which the researchers asked the women to recall while they were lying in the positron emission tomography (PET) scanner having their brains imaged. The women recalled the death or serious illness of a friend or family member, a past divorce or breakup with a boyfriend, or other major difficulties. They also had their brains imaged during a neutral emotional state.

Just before the brain scans, the women also had their blood tested to measure levels of two hormones that are released in response to stress. The depressed women were then prescribed an antidepressant drug and reported regularly about their depression symptoms for the next ten weeks. Those whose depression hadn't eased by the end of the first month received a prescription for an increased dose of antidepressant.

"Women who had more pronounced responses in their stress response mechanisms during brain imaging also showed alterations in hormones, like cortisol, that are sometimes over-secreted in depression," Zubieta explains. "In addition, these women responded poorly to treatment with medication."

The research builds on previous studies that found differences in the body's and brain's stress-response system among people with depression. But this is the first time that specific differences in the mu-opioid system have been shown between people with depression and those without.

Zubieta performed the work with former doctoral student, Susan Kennedy, Ph.D., who is first author on the new paper. They used a brain-imaging technique that the U-M team has previously used to see how the brain responds to pain – and to placebo pain treatment.

The technique uses a form of a drug called carfentanil, which binds to the same receptors on the surface of brain cells that brain chemicals called mu-opioids bind to. Mu-opioids, sometimes also called endorphins, reduce or block the spread of messages related to pain, stress and emotional distress between the body and the brain. They have been called the body's "natural painkillers." The drug is modified to allow it to be "seen" by the PET scanner, so that the researchers can create maps of the specific brain areas where the natural mu-opioids are more or less active at any given time.

In the new study, the researchers also found that the mu-opioid system was overactive in women with depression, even at baseline, when they weren't being asked to recall sad memories.

During the "sadness challenge", the non-depressed women did not show any activation of their mu-opioid system, but the depressed women had a significant activation of that system, and the level of that activation correlated with the intensity of their negative emotional state brought on by the sad memories. Among the non-depressed women, the mu-opioid system was actually less active in some parts of the brain than it had been before they recalled sad memories.

The researchers found differences among the depressed women, too, in some areas of the brain. In the rostral anterior cingulate, which is involved in mood regulation and the integration of sensations and emotions, women who later responded to antidepressant treatment had far lower mu-opioid responses than women who did not respond to medication.

The new findings add the mu-opioid system to the list of brain systems that appear to be altered in depression. Others include the corticotrophin-releasing hormone system, and those involved in noradrenaline, dopamine and serotonin production.

"Further research on these differences, and their relationship to patients' responses to various depression treatments, is crucial to the continued improvement in the understanding of depression and the development of better treatment strategies for patients," Zubieta says.

Kara Gavin | EurekAlert!
Further information:
http://www.depressioncenter.org
http://www.umich.edu

Further reports about: Emotional antidepressant memories mu-opioid pain

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>