Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain-chemistry differences found in depressed women

08.11.2006
U-M Depression Center study shows alterations in key brain-chemical system involved in responding to stress and regulating emotions

A new brain study finds major differences between women with serious depression and healthy women in a brain-chemical system that's crucial to stress and emotions.

The study adds further evidence that depression has its roots in specific alterations within the brain -- specifically in the endogenous opioid system that is a central part of the brain's natural pain and stress-reduction system. The findings also show significant variation between individuals with depression – variation that seems to be linked to whether or not the patients respond to an antidepressant medication.

The study, performed by researchers at the University of Michigan Medical School affiliated with the U-M Depression Center, is published in the November issue of the Archives of General Psychiatry. It's based on brain imaging, blood chemistry and other data from 14 women with major depression, and 14 healthy women of about the same age and background. The women with depression were not taking antidepressants when the study began.

... more about:
»Emotional »antidepressant »memories »mu-opioid »pain

"This work gives further evidence of individual differences in brain mechanisms that are altered in major depression," says senior author Jon-Kar Zubieta, M.D., Ph.D., the Jenkins Research Professor of Depression and associate professor of psychiatry and radiology. "We found these differences in the response of the endogenous opioid system. Some women, but not others, with major depression, showed exaggerated responses in this system when undergoing an emotional challenge."

That emotional challenge was the summoning of memories of a very sad event in their lives, which the researchers asked the women to recall while they were lying in the positron emission tomography (PET) scanner having their brains imaged. The women recalled the death or serious illness of a friend or family member, a past divorce or breakup with a boyfriend, or other major difficulties. They also had their brains imaged during a neutral emotional state.

Just before the brain scans, the women also had their blood tested to measure levels of two hormones that are released in response to stress. The depressed women were then prescribed an antidepressant drug and reported regularly about their depression symptoms for the next ten weeks. Those whose depression hadn't eased by the end of the first month received a prescription for an increased dose of antidepressant.

"Women who had more pronounced responses in their stress response mechanisms during brain imaging also showed alterations in hormones, like cortisol, that are sometimes over-secreted in depression," Zubieta explains. "In addition, these women responded poorly to treatment with medication."

The research builds on previous studies that found differences in the body's and brain's stress-response system among people with depression. But this is the first time that specific differences in the mu-opioid system have been shown between people with depression and those without.

Zubieta performed the work with former doctoral student, Susan Kennedy, Ph.D., who is first author on the new paper. They used a brain-imaging technique that the U-M team has previously used to see how the brain responds to pain – and to placebo pain treatment.

The technique uses a form of a drug called carfentanil, which binds to the same receptors on the surface of brain cells that brain chemicals called mu-opioids bind to. Mu-opioids, sometimes also called endorphins, reduce or block the spread of messages related to pain, stress and emotional distress between the body and the brain. They have been called the body's "natural painkillers." The drug is modified to allow it to be "seen" by the PET scanner, so that the researchers can create maps of the specific brain areas where the natural mu-opioids are more or less active at any given time.

In the new study, the researchers also found that the mu-opioid system was overactive in women with depression, even at baseline, when they weren't being asked to recall sad memories.

During the "sadness challenge", the non-depressed women did not show any activation of their mu-opioid system, but the depressed women had a significant activation of that system, and the level of that activation correlated with the intensity of their negative emotional state brought on by the sad memories. Among the non-depressed women, the mu-opioid system was actually less active in some parts of the brain than it had been before they recalled sad memories.

The researchers found differences among the depressed women, too, in some areas of the brain. In the rostral anterior cingulate, which is involved in mood regulation and the integration of sensations and emotions, women who later responded to antidepressant treatment had far lower mu-opioid responses than women who did not respond to medication.

The new findings add the mu-opioid system to the list of brain systems that appear to be altered in depression. Others include the corticotrophin-releasing hormone system, and those involved in noradrenaline, dopamine and serotonin production.

"Further research on these differences, and their relationship to patients' responses to various depression treatments, is crucial to the continued improvement in the understanding of depression and the development of better treatment strategies for patients," Zubieta says.

Kara Gavin | EurekAlert!
Further information:
http://www.depressioncenter.org
http://www.umich.edu

Further reports about: Emotional antidepressant memories mu-opioid pain

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>