Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive model is first to map protein folding at atomic level

08.11.2006
Unlike previous methods, new technique can trace full folding of small proteins to native state

Scientists at Harvard University have developed a computer model that, for the first time, can fully map and predict how small proteins fold into three-dimensional, biologically active shapes. The work could help researchers better understand the abnormal protein aggregation underlying some devastating diseases, as well as how natural proteins evolved and how proteins recognize correct biochemical partners within living cells.

The technique, which can track protein folding for some 10 microseconds -- about as long as some proteins take to assume their biologically stable configuration, and at least a thousand times longer than previous methods -- is described this week in the Proceedings of the National Academy of Sciences.

"For years, a sizable army of scientists has been working toward better understanding how proteins fold," says co-author Eugene I. Shakhnovich, professor of chemistry and chemical biology in Harvard's Faculty of Arts and Sciences. "One of the great problems in science has been deciphering how amino acid sequence -- a protein's primary structure -- also determines its three-dimensional structure, and through that its biological function. Our paper provides a first solution to the folding problem, for small proteins, at an atomic level of detail."

Fiendishly intricate, protein folding is crucial to the chemistry of life. Each of the body's 20 amino acids, the building blocks of proteins, is attracted or repulsed by water; it's largely these affinities that drive the contorting of proteins into distinctive three-dimensional shapes within the watery confines of a cell. The split-second folding of gangly protein chains into tight three-dimensional shapes has broad implications for the growing number of disorders believed to result from misfolded proteins or parts of proteins, most notably neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.

The model developed by Shakhnovich and colleagues faithfully describes and catalogs countless interactions between the individual atoms that comprise proteins. In so doing, it essentially predicts, given a string of amino acids, how the resulting protein will fold -- the first computer model to fully replicate folding of a protein as happens in nature. In more than 4,000 simulations conducted by the researchers, the computer model consistently predicted folded structures nearly identical to those that have been observed experimentally.

"This work should open new vistas in protein engineering, allowing rational control of not only protein folding, but also the design of pathways that lead to these folds," says Shakhnovich, who has studied protein folding for nearly two decades. "We are also using these techniques to better understand two fundamental biological questions: How have natural proteins evolved, and how do proteins interact in living cells to recognize correct partners versus promiscuous ones?"

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: amino acid protein folding three-dimensional

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>